




# **WPSF100 Chemical Anchor**

ETA-16/0541







# European Technical Assessment

ETA 16/0541 of 27/06/2016

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

eota@tzus.cz

Trade name of the construction product Walraven Injection System

WPSF100, WPSF100W, WPSF100T

Product family to which the Product area code: 33

construction product belongs Injection anchors for use in masonry

**Manufacturer** J. van Walraven Holding B.V.

Industrieweg 5 3641 RK Mijdrecht The Netherlands

Manufacturing plant(s) Walraven Factory A1

This European Technical Assessment

contains

16 pages including 12 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

ETAG 029, edition 2013, used as European Assessment Document (EAD)

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

ETA 16/0541 of 27/06/2016 - Page 1 of 16

090-036136

#### 1. Technical description of the product

The Walraven Injection System WPSF100, WPSF100W (faster curing time) and WPSF100T (extended curing time) for masonry is a bonded anchor consisting of a cartridge with injection mortar, a plastic sieve sleeve and an threaded rod with hexagon nut and washer or internal threaded socket. The steel elements are made of galvanized steel or stainless steel.

The sieve sleeve is pushed into a drilled hole and filled with injection mortar before the threaded rod or the socket with internal thread is placed in the sieve sleeve. The installation of the threaded rod in solid masonry can be also done without a sieve sleeve. The steel element is anchored via the bond between metal part, injection mortar and masonry.

The illustration and the description of the product are given in Annex A.

#### 2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

### 3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                              | Performance   |
|-------------------------------------------------------|---------------|
| Reduction factor for job site tests (β – factor)      | See Annex C 1 |
| Characteristic resistance for tension and shear loads | See Annex C 1 |
| Characteristic resistance for bending moments         | See Annex C 1 |
| Displacement under shear and tension loads            | See Annex C 1 |
| Edge distances and spacing                            | See Annex B 6 |

3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance               |
|--------------------------|---------------------------|
| Reaction to fire         | Anchorages satisfy        |
|                          | requirements for Class A1 |
| Resistance to fire       | No performance assessed   |

#### 3.3 Hygiene, health and environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Regulation (EU) No 305/2011), these requirements need also to be complied with, when and where they apply.

#### 3.4 Safety in use (BWR 4)

For basic requirement safety in use, the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

Page 2/16 of ETA 16/0541 issued of 27/06/2016

#### 3.5 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources, no performance was determined for this product.

#### 3.6 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

## 4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/177/EC of the European Commission<sup>1</sup>, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

| Product               | Intended use                        | Level or class | System |
|-----------------------|-------------------------------------|----------------|--------|
| Injection anchors for | For fixing and/or supporting to     |                |        |
| use in masonry        | masonry, structural elements        |                | 1      |
|                       | (which contributes to the stability | -              | '      |
|                       | of the works) or heavy units        |                |        |

## 5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

#### 5.1 Tasks of the manufacturer

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European Technical Assessment.

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague <sup>2</sup>. The results of the factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

The manufacturer shall, on the basis of a contract, involve a body which is notified for the tasks referred to in section 4 in the field of anchors in order to undertake the actions laid down in section 5.2. For this purpose, the control plan referred to in this section and section 5.2 shall be handed over by the manufacturer to the notified body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European Technical Assessment.

Page 3/16 of ETA 16/0541 issued of 27/06/2016

Official Journal of the European Communities L 073 of 14.03.1997

The control plan is a confidential part of the documentation of the European technical assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

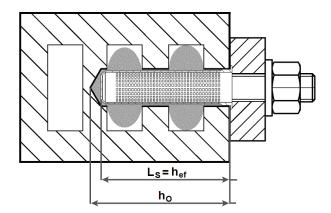
#### 5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

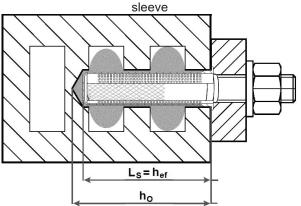
The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.

In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled, the notified body shall withdraw the certificate of constancy of performance and inform Technical and Test Institute for Construction Prague without delay.

Issued in Prague on 27.06.2016

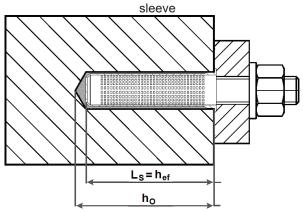

Ву

**Ing. Mária Schaan** Head of the TAB

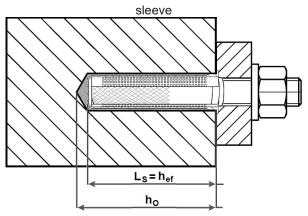

Page 4/16 of ETA 16/0541 issued of 27/06/2016

#### Installation in hollow or perforated brick masonry

Installation of threaded rod with sieve sleeve




Installation of internal threaded socket with sieve



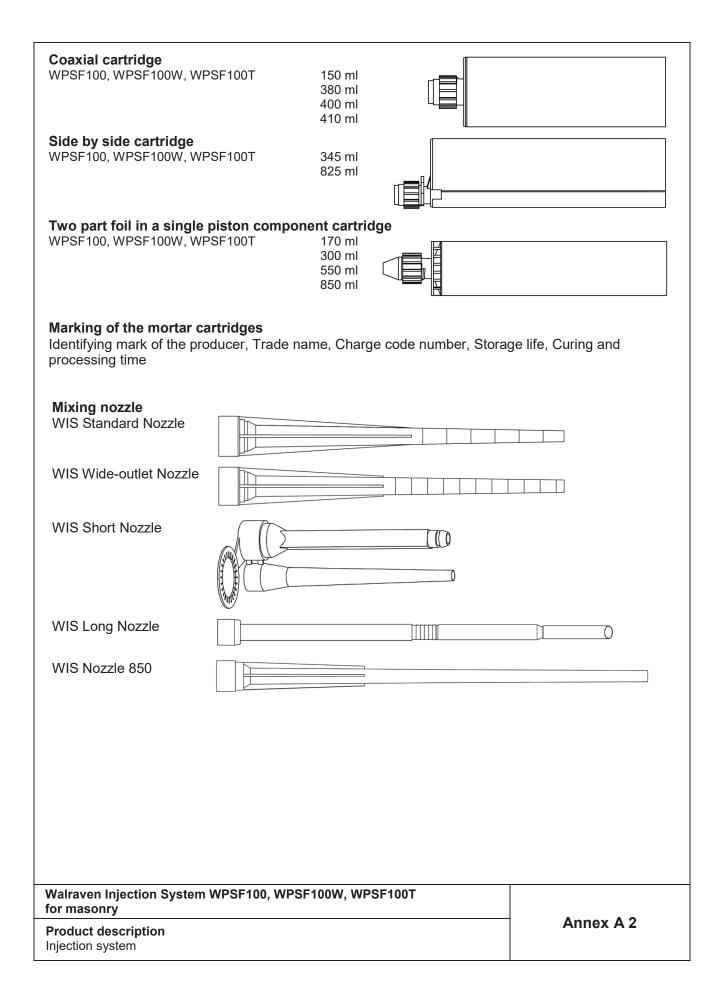

#### Installation in solid brick masonry

Installation of threaded rod with or without sieve

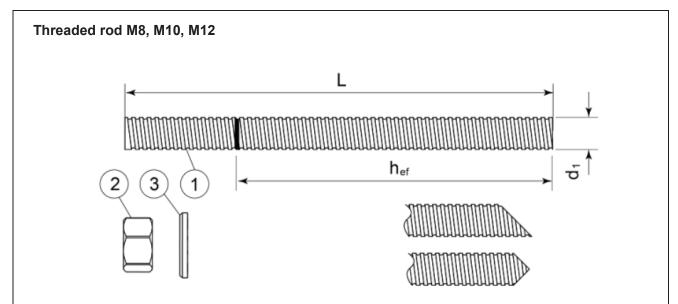


Installation of internal threaded socket with sieve




Ls = length of the sieve sleeve

hef = effective setting depth


 $h_0$  = bore hole depth

| Walraven Injection System WPSF100, WPSF100W, WPSF100T |           |
|-------------------------------------------------------|-----------|
| for masonry                                           |           |
| Product description Installed condition               | Annex A 1 |

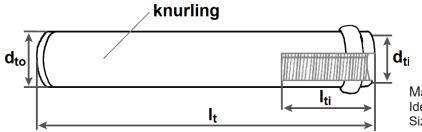
Page 5/16 of ETA 16/0541 issued of 27/06/2016



Page 6/16 of ETA 16/0541 issued of 27/06/2016



Standard commercial threaded rod with marked embedment depth


| Part                                                                                                                                                                                    | Designation                                                      | Material                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|
| Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or<br>Steel, hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or<br>Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811 |                                                                  |                                                                            |
| 1                                                                                                                                                                                       | Threaded rod                                                     | Steel, EN 10087 or EN 10263<br>Property class 5.8, 8.8, 10.9* EN ISO 898-1 |
| 2                                                                                                                                                                                       | Hexagon nut<br>EN ISO 4032                                       | According to threaded rod, EN 20898-2                                      |
| 3                                                                                                                                                                                       | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094 | According to threaded rod                                                  |
| Stainl                                                                                                                                                                                  | ess steel                                                        |                                                                            |
| 1                                                                                                                                                                                       | Threaded rod                                                     | Material: A2-70, A4-70, A4-80, EN ISO 3506                                 |
| 2                                                                                                                                                                                       | Hexagon nut<br>EN ISO 4032                                       | According to threaded rod                                                  |
| 3                                                                                                                                                                                       | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094 | According to threaded rod                                                  |
| High (                                                                                                                                                                                  | corrosion resistant steel                                        |                                                                            |
| 1                                                                                                                                                                                       | Threaded rod                                                     | Material: 1.4529, 1.4565, EN 10088-1                                       |
| 2                                                                                                                                                                                       | Hexagon nut<br>EN ISO 4032                                       | According to threaded rod                                                  |
| 3                                                                                                                                                                                       | Washer<br>EN ISO 887, EN ISO 7089,<br>EN ISO 7093 or EN ISO 7094 | According to threaded rod                                                  |

<sup>\*</sup>Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

| Walraven Injection System WPSF100, WPSF100W, WPSF100T for masonry |           |
|-------------------------------------------------------------------|-----------|
| Product description Threaded rod and materials                    | Annex A 3 |

Page 7/16 of ETA 16/0541 issued of 27/06/2016

#### Internal threaded socket



Marking:

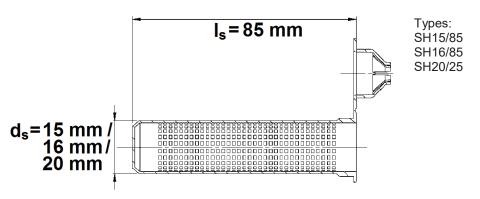

Identifying mark of the producer "m" Size of internal thread e.g. M8

Table A1: Dimensions of internal threaded socket

| Internal threaded socket | Outer diameter  | Inner diameter       | Length of the internal thread | Total length        |
|--------------------------|-----------------|----------------------|-------------------------------|---------------------|
|                          | d <sub>ti</sub> | d <sub>to</sub> [mm] | l <sub>ti</sub> [mm]          | I <sub>t</sub> [mm] |
| 12 x 80                  | M8              | 12                   | 30                            | 80                  |
| 14 x 80                  | M10             | 14                   | 30                            | 80                  |
| 16 x 80                  | M12             | 16                   | 30                            | 80                  |

| Designation           | М      | aterial                                                      |
|-----------------------|--------|--------------------------------------------------------------|
| Internal threaded soc | ket st | rength class 5.8 EN ISO 898-1, galvanized ≥ 5 µm EN ISO 4042 |

#### Sieve sleeve



| Designation  | Material      |
|--------------|---------------|
| Sieve sleeve | Polypropylene |

| Walraven Injection System WPSF100, WPSF100W, WPSF100T |           |
|-------------------------------------------------------|-----------|
| for masonry                                           |           |
| Product description                                   | Annex A 4 |
| Internal threaded socket and materials                |           |
| Sleeve                                                |           |

Page 8/16 of ETA 16/0541 issued of 27/06/2016

#### Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static loads

#### **Base materials**

- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (Use category c), according to Annex B2 to B3.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchorages may be determined by job site tests according to ETAG 029, Annex B and under consideration of the β-factor to Annex C1, Table C1.

Note: The characteristic resistance for solid bricks are also valid for larger brick sizes and larger compressive strength of the masonry unit.

#### Temperature range:

- T<sub>a</sub>: -40°C to +40°C (max. short. term temperature +40°C and max. long term temperature +24°C)
- T<sub>b</sub>: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

#### **Use conditions (Environmental conditions)**

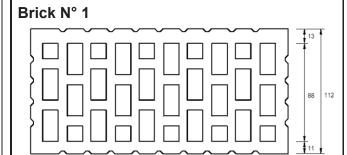
- Structures subject to dry internal conditions (zinc coated steel)

#### Use categories in respect of installation and use:

- Category d/d
- Category w/d

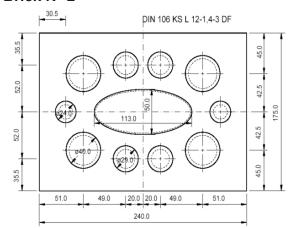
#### Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorage are designed in accordance with the ETAG 029, Annex C, Design method A, under the responsibility of an engineer experienced in anchorages and masonry work.


#### Installation:

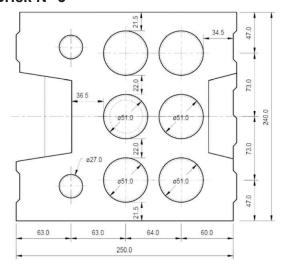
- Dry or wet structures
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

| Walraven Injection System WPSF100, WPSF100W, WPSF100T for masonry |           |
|-------------------------------------------------------------------|-----------|
| Intended use<br>Specifications                                    | Annex B 1 |


Page 9/16 of ETA 16/0541 issued of 27/06/2016

#### Table B1: Types and dimensions of block and bricks




Hollow clay brick HLz 12-1,0-2DF according to EN 771-1 length/width/height = 235 mm/112 mm/115 mm  $f_b \geq$  12 N/mm² /  $\rho \geq$  1,0 kg/dm³

#### Brick N° 2



Hollow sand lime brick KSL 12-1,4-3DF according to EN 771-2 length/width/height = 240 mm/175 mm/113 mm  $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 1,4 \text{ kg/dm}^3$ 

#### Brick N° 3

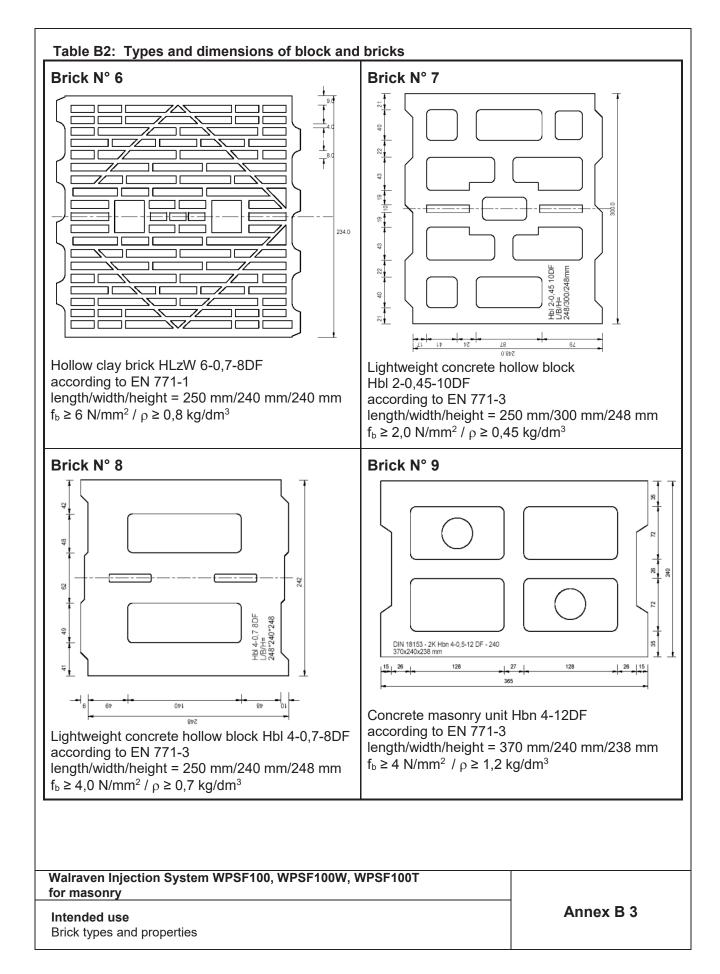


Hollow sand lime brick KSL 12-1,4-8DF according to EN 771-2 length/width/height = 250 mm/240 mm/237 mm  $f_b \geq$  12 N/mm² /  $\rho \geq$  1,4 kg/dm³

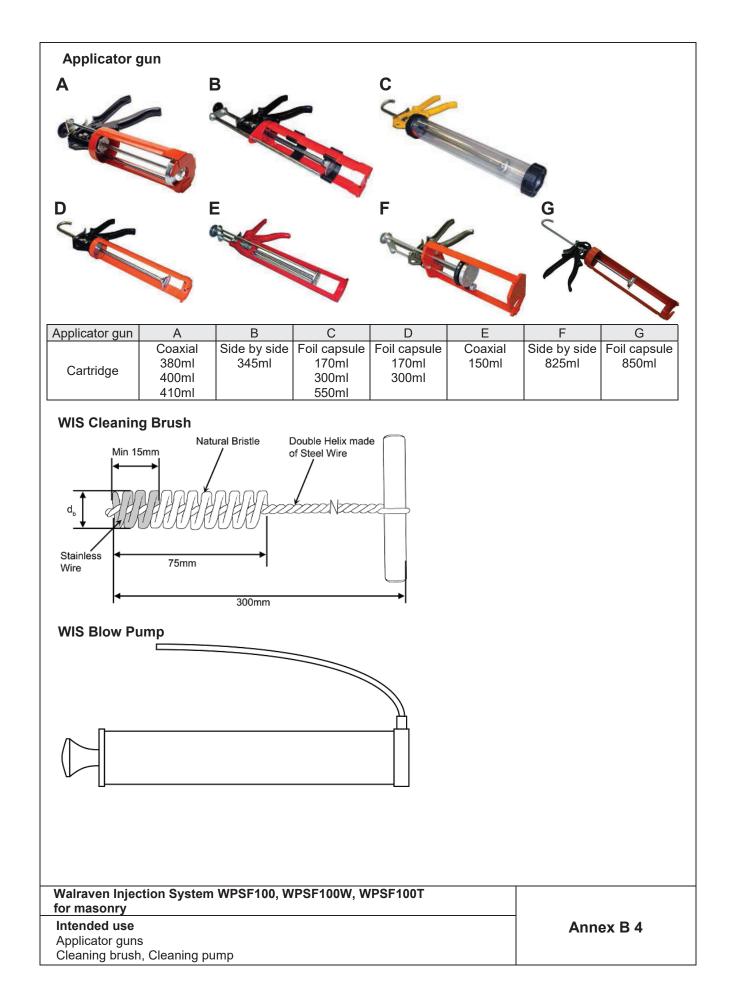
#### Brick N° 4

Solid clay brick Mz 12-2,0-NF according to EN 771-1 length/width/height = 240 mm/116 mm/71 mm  $f_b \ge 12$  N/mm² /  $\rho \ge 2,0$  kg/dm³

#### Brick N° 5


Solid sand lime brick KS 12-2,0-NF according to EN 771-2 length/width/height = 240 mm/115 mm/70 mm  $f_b \ge$  12 N/mm² /  $\rho \ge$  2,0 kg/dm³

| Walraven Injection System WPSF100, WPSF100W, WPSF100T for masonry |  |
|-------------------------------------------------------------------|--|
| Intended use                                                      |  |


Brick types and properties

Annex B 2

Page 10/16 of ETA 16/0541 issued of 27/06/2016



Page 11/16 of ETA 16/0541 issued of 27/06/2016



Page 12/16 of ETA 16/0541 issued of 27/06/2016

| Installation                     | n instructions                                                                                                                                                                                       |         |                                  |                                                                                                                                     |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Drill the hole to the correct diameter and depth using a rotary percussive machine.                                                                                                                  | 2×      | 2. Use to clean the              | the WIS Blow pump to ne hole.                                                                                                       |
| 2x                               | 3. Use the WIS Brush to clean the hole. Diameter of Cleaning brush according to Table B3.                                                                                                            | 2×      | 4. Use to clean the              | the WIS Blow pump to<br>ne hole.                                                                                                    |
| 2×                               | <b>5.</b> Use the WIS Brush to clean the hole. Diameter of Cleaning brush according to Table B3.                                                                                                     | 2×      | 6. Use to clean the              | the WIS Blow pump to<br>ne hole.                                                                                                    |
|                                  | 7. If used in hollow or perforated brick masonry: Plug the centering cap and insert the correct perforated sleeve flush with the surface of the base material.                                       |         |                                  | e the hole is prepared,<br>the screw cap from the<br>e.                                                                             |
|                                  | <b>9</b> . Attach the mixer nozzle and place the cartridge in the applicator gun.                                                                                                                    | 2x      |                                  | pense the first part to<br>until an even colour is<br>ed.                                                                           |
|                                  | <b>11.</b> Remove any remaining water from the hole.                                                                                                                                                 |         | end of t<br>tubing i<br>resin, w | ert the nozzle to the far<br>the hole (using extension<br>f necessary) and inject the<br>rithdrawing the nozzle/tube<br>nole fills. |
|                                  | 13. If used in hollow or perforated brick masonry: Insert mixer nozzle to the end of the perforated sleeve and completely fill the sleeve with resin. Withdraw the mixer nozzle as the sleeve fills. |         | (steel e<br>slight tv<br>excess  | nediately insert the fixing<br>lement) slowly and with a<br>visting motion. Remove<br>resin from around the<br>of the hole.         |
|                                  | <b>15.</b> Leave the fixing undisturbed until the cure time (see Table B5) has elapsed.                                                                                                              |         | the nut.                         | nch the fixture and tighten Maximum installation moment according to 33.                                                            |
|                                  |                                                                                                                                                                                                      |         |                                  |                                                                                                                                     |
| Walraven Inje                    | ection System WPSF100, WPSF100W, WI                                                                                                                                                                  | PSF100T |                                  |                                                                                                                                     |
| Intended use<br>Installation ins |                                                                                                                                                                                                      |         |                                  | Annex B 5                                                                                                                           |

Page 13/16 of ETA 16/0541 issued of 27/06/2016

| Table B3: Installation parameters in solid and hollow masonry |                  |      |                               |     |     |      |       |      |      |     |      |                          |       |       |  |
|---------------------------------------------------------------|------------------|------|-------------------------------|-----|-----|------|-------|------|------|-----|------|--------------------------|-------|-------|--|
| Anchor type                                                   |                  |      |                               |     | Thr | eade | d rod |      |      |     | Inte | Internal threaded socket |       |       |  |
| Size                                                          |                  |      | M8                            | M10 | M12 | M    | 8     | M    | 10   | M12 | М    | 8                        | M10   | M12   |  |
| Internal threaded socket                                      | $d_{to}xI_{t}$   | [mm] | -                             | -   | -   | •    |       | •    |      | -   | 12>  | (80                      | 14x80 | 16x80 |  |
| Sieve sleeve                                                  | ls               | [mm] | -                             | -   | -   | 8    | 5     | 8    | 5    | 85  | 8    | 5                        | 85    | 85    |  |
| Sieve sieeve                                                  | ds               | [mm] | -                             | -   | -   | 15   | 16    | 15   | 16   | 20  | 15   | 16                       | 20    | 20    |  |
| Nominal drill hole diameter                                   | $d_0$            | [mm] | 15                            | 15  | 20  | 15   | 16    | 15   | 16   | 20  | 15   | 16                       | 20    | 20    |  |
| Diameter of<br>cleaning brush                                 | d <sub>b</sub>   | [mm] | 20±1 20±1 22±1 20±1 20±1 22±1 |     |     | 20   | ±1    | 22±1 | 22±1 |     |      |                          |       |       |  |
| Depth of the drill hole                                       | h <sub>0</sub>   | [mm] |                               |     |     |      |       |      | 90   |     |      |                          |       |       |  |
| Effective anchorage depth                                     | h <sub>ef</sub>  | [mm] | 85 80                         |     |     |      |       |      |      |     |      |                          |       |       |  |
| Diameter of clearance hole in the fixture                     | d <sub>f</sub> ≤ | [mm] | 9                             | 12  | 14  | Ç    | 9     | 1    | 2    | 14  | Ç    | )                        | 12    | 14    |  |
| Torque moment T                                               | inst ≤           | [mm] |                               |     |     |      |       |      | 2    |     |      |                          |       |       |  |

Table B4: Edge distances and spacing

| rable B4:                      | Table B4: Edge distances and spacing |                |                                        |                                    |                  |                           |                     |               |                                        |  |
|--------------------------------|--------------------------------------|----------------|----------------------------------------|------------------------------------|------------------|---------------------------|---------------------|---------------|----------------------------------------|--|
|                                |                                      |                |                                        | Thread                             |                  |                           |                     |               |                                        |  |
|                                |                                      | M8             |                                        |                                    | M10              |                           |                     | M12           |                                        |  |
| Base<br>material <sup>1)</sup> | = C <sub>min</sub>                   | = Smin         | = Smin⊥                                | □ C <sub>min</sub>                 | II Smin II       | = Smin⊥                   | II C <sub>min</sub> | S min         | = Smin⊥                                |  |
| illaterial                     | Coc                                  | Scr =          | Scrl                                   | C C                                | 8<br>0<br>0<br>1 | S <sub>Cr</sub> –         | S S                 | %<br>Co       | S <sub>Cr</sub> ⊥                      |  |
| D : 1 NO 4                     | [mm]                                 | [mm]           | [mm]                                   | [mm]                               | [mm]             | [mm]                      | [mm]                | [mm]          | [mm]                                   |  |
| Brick N° 1                     | 100                                  | 235            | 115                                    | 100                                | 235              | 115                       | 120                 | 235           | 115                                    |  |
| Brick N° 2                     | 100                                  | 240            | 113                                    | 100                                | 240              | 113                       | 120                 | 240           | 113                                    |  |
| Brick N° 3                     | 100                                  | 250            | 237                                    | 100                                | 250              | 237                       | 120                 | 250           | 237                                    |  |
| Brick N° 4                     | 128                                  | 255            | 255                                    | 128                                | 255              | 255                       | 128                 | 255           | 255                                    |  |
| Brick N° 5                     | 128                                  | 255            | 255                                    | 128                                | 255              | 255                       | 128                 | 255           | 255                                    |  |
| Brick N° 6                     | 100                                  | 250            | 240                                    | 100                                | 250              | 240                       | 120                 | 250           | 240                                    |  |
| Brick N° 7                     | 100                                  | 250            | 248                                    | 100                                | 250              | 248                       | -                   | -             | -                                      |  |
| Brick N° 8                     | 100                                  | 250            | 248                                    | 100                                | 250              | 248                       | 120                 | 250           | 248                                    |  |
| Brick N° 9                     | 100                                  | 370            | 238                                    | 100                                | 370              | 238                       | 120                 | 370           | 238                                    |  |
|                                |                                      |                | Int                                    | ernal threa                        | aded socke       | et                        |                     |               |                                        |  |
|                                |                                      | M8             |                                        |                                    | M10              |                           |                     | M12           |                                        |  |
| Base<br>material <sup>1)</sup> | C <sub>cr</sub> = C <sub>min</sub>   | Scr II Smin II | S <sub>cr</sub> ⊥ = S <sub>min</sub> ⊥ | C <sub>cr</sub> = C <sub>min</sub> | Scr II = Smin II | S <sub>cr</sub> ⊥ = Smin⊥ | Ccr II Cmin         | Scr    = Smin | S <sub>cr</sub> ⊥ = S <sub>min</sub> ⊥ |  |
|                                | [mm]                                 | [mm]           | [mm]                                   |                                    | [mm]             | [mm]                      | [mm]                | [mm]          | [mm]                                   |  |
| Brick N° 1                     | 100                                  | 235            | 115                                    | [mm]<br>120                        | 235              | 115                       | 120                 | 235           | 115                                    |  |
| Brick N° 2                     | 100                                  | 240            | 113                                    | 120                                | 240              | 113                       | 120                 | 240           | 113                                    |  |
| Brick N° 3                     | -                                    | - 240          | - 110                                  | 120                                | 250              | 237                       | 120                 | 250           | 237                                    |  |
| Brick N° 4                     | 128                                  | 255            | 255                                    | 128                                | 255              | 255                       | 128                 | 255           | 255                                    |  |
| Brick N° 5                     | 128                                  | 255            | 255                                    | 128                                | 255              | 255                       | 128                 | 255           | 255                                    |  |
| Brick N° 6                     | 100                                  | 250            | 240                                    | 120                                | 250              | 240                       | 120                 | 250           | 240                                    |  |
| Brick N° 7                     | 100                                  | 250            | 248                                    | 120                                | 250              | 248                       | 120                 | 250           | 248                                    |  |
|                                |                                      |                | -                                      | 120                                | 250              | 248                       | 120                 | 250           | 248                                    |  |
| Brick No 0                     |                                      |                |                                        |                                    |                  |                           |                     |               |                                        |  |
| Brick N° 8<br>Brick N° 9       | 100                                  | 370            | 238                                    | 120                                | 370              | 238                       | 120                 | 370           | 238                                    |  |

<sup>1)</sup> Brick N° according to Annex B 2 and B 3

| Walraven Injection System WPSF100, WPSF100W, WPSF100T for masonry |           |
|-------------------------------------------------------------------|-----------|
| Intended use Installation parameters                              | Annex B 6 |

Page 14/16 of ETA 16/0541 issued of 27/06/2016

Table B5.1: Minimum curing time WPSF100

| Resin cartridge temperature [°C] | T Work [mins] | Base material Temperature [°C] | T Load [mins] |
|----------------------------------|---------------|--------------------------------|---------------|
| min +5                           | 18            | min +5                         | 145           |
| +5 to +10                        | 10            | +5 to +10                      | 145           |
| +10 to +20                       | 6             | +10 to +20                     | 85            |
| +20 to +25                       | 5             | +20 to +25                     | 50            |
| +25 to +30                       | 1             | +25 to +30                     | 40            |
| +30                              | 4             | +30                            | 35            |

Table B5.2: Minimum curing time WPSF100W

| Resin cartridge temperature [°C] | T Work [mins] | Base material Temperature [°C] | T Load [mins] |
|----------------------------------|---------------|--------------------------------|---------------|
| min +5                           | 5             | -10 to -5                      | 4 hours       |
| 111111 +3                        | 5             | -5 to +5                       | 125           |
| +5 to +10                        | 3,5           | +5 to +10                      | 60            |
| +10 to +20                       | 2             | +10 to +20                     | 40            |
| +20 to +25                       | 1,5           | +20 to +25                     | 20            |
| +25 to +30                       | 1             | +25 to +30                     | 15            |
| +30                              | ı             | +30                            | 10            |

Table B5.3: Minimum curing time WPSF100T

| rable Boto. Minimani daring time Wi or 1001 |               |                                |               |  |  |  |  |  |
|---------------------------------------------|---------------|--------------------------------|---------------|--|--|--|--|--|
| Resin cartridge temperature [°C]            | T Work [mins] | Base material Temperature [°C] | T Load [mins] |  |  |  |  |  |
| min +10                                     | 30            | min +10                        | 5 hours       |  |  |  |  |  |
| +10 to +20                                  | 15            | +10 to +20                     | STIOUIS       |  |  |  |  |  |
| +20 to +25                                  | 10            | +20 to +25                     | 145           |  |  |  |  |  |
| +25 to +30                                  | 7,5           | +25 to +30                     | 85            |  |  |  |  |  |
| +30 to +35                                  | 5             | +30 to +35                     | 50            |  |  |  |  |  |
| +35 to +40                                  | 3,5           | +35 to +40                     | 40            |  |  |  |  |  |
| +40 to +45                                  | 2,5           | +40 to +45                     | 35            |  |  |  |  |  |
| +45                                         | 2,5           | +45                            | 12            |  |  |  |  |  |

T work is typical gel time at highest temperature T load is set at the lowest temperature

| Walraven Injection System WPSF100, WPSF100W, WPSF100T for masonry |           |
|-------------------------------------------------------------------|-----------|
| Intended use Working and curing time                              | Annex B 7 |

Page 15/16 of ETA 16/0541 issued of 27/06/2016

walraven.com The value of smart

Table C1: Characteristic resistance under tension and shear loading

| Base material |      | readed ro |     | Internal threaded sockets<br>N <sub>Rk</sub> = V <sub>Rk</sub> [kN] <sup>1)</sup> |      |      |  |
|---------------|------|-----------|-----|-----------------------------------------------------------------------------------|------|------|--|
|               | M8   | M10       | M12 | M8                                                                                | M10  | M12  |  |
| Brick N° 1    | 2,5  | 2,0       | 2,0 | 1,5                                                                               | 2,5  | 2,5  |  |
| Brick N° 2    | 0,75 | 1,2       | 0,5 | 0,6                                                                               | 0,75 | 0,9  |  |
| Brick N° 3    | 0,75 | 1,2       | 0,5 | -                                                                                 | 0,75 | 0,4  |  |
| Brick N° 4    | 1,5  | 1,5       | 3,0 | 2,0                                                                               | 3,0  | 4,0  |  |
| Brick N° 5    | 0,75 | 0,9       | 1,5 | 2,0                                                                               | 1,5  | 0,9  |  |
| Brick N° 6    | 1,2  | 1,2       | 0,9 | 0,9                                                                               | 1,5  | 0,6  |  |
| Brick N° 7    | 0,6  | 0,3       | -   | 0,5                                                                               | 0,3  | 0,75 |  |
| Brick N° 8    | 0,6  | 1,5       | 1,2 | -                                                                                 | 0,4  | 0,6  |  |
| Brick N° 9    | 2,5  | 1,5       | 2,5 | 0,6                                                                               | 1,2  | 0,9  |  |

<sup>1)</sup> For design according ETAG 029, Annex C: N<sub>Rk</sub> = N<sub>Rk,p</sub> = N<sub>Rk,b</sub> = N<sub>Rk,s</sub>; N<sub>Rk,pb</sub> according to ETAG 029, Annex C For V<sub>Rk,s</sub> see Annex C1, Table C2; Calculation of V<sub>Rk,pb</sub> and V<sub>Rk,c</sub> according to ETAG 029, Annex C

**Table C2: Characteristic bending moment** 

| Size                                                         |            |       | M8 | M10 | M12 |
|--------------------------------------------------------------|------------|-------|----|-----|-----|
| Steel grade <b>5.8</b>                                       | $M_{Rk,s}$ | [N.m] | 19 | 37  | 66  |
| Steel grade <b>8.8</b>                                       | $M_{Rk,s}$ | [N.m] | 30 | 60  | 105 |
| Steel grade <b>10.9</b>                                      | $M_{Rk,s}$ | [N.m] | 37 | 75  | 131 |
| Stainless steel grade <b>A2-70</b> , <b>A4-70</b>            | $M_{Rk,s}$ | [N.m] | 26 | 52  | 92  |
| Stainless steel grade <b>A4-80</b>                           | $M_{Rk,s}$ | [N.m] | 30 | 60  | 105 |
| Stainless steel grade 1.4529 strength class 70               | $M_{Rk,s}$ | [N.m] | 26 | 52  | 92  |
| Stainless steel grade <b>1.4565</b> strength class <b>70</b> | $M_{Rk,s}$ | [N.m] | 26 | 52  | 92  |

Table C3: Displacements under tension and shear load

| Base material                | F [kN]                          | δ <sub>N0</sub> [mm] | δ <sub>N∞</sub> [mm] | δ <sub>v0</sub> [mm] | δ <sub>V∞</sub> [mm] |
|------------------------------|---------------------------------|----------------------|----------------------|----------------------|----------------------|
| Solid bricks                 | N //1.4                         | 0,6                  | 1,2                  | 1,0 <sup>1)</sup>    | 1,5 <sup>1)</sup>    |
| Perforated and hollow bricks | $N_{Rk} / (1,4 \cdot \gamma_M)$ | 0,14                 | 0,28                 | 1,0 <sup>1)</sup>    | 1,5 <sup>1)</sup>    |

<sup>1)</sup> the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to ETAG 029, Annex B

| Brick N°   | N° 1 | N° 2 | N° 3 | N° 4 | N° 5 | N° 6 | N° 7 | N° 8 | N° 9 |
|------------|------|------|------|------|------|------|------|------|------|
| β - factor | 0,62 | 0,28 | 0,22 | 0,48 | 0,26 | 0,43 | 0,42 | 0,36 | 0,60 |

| Walraven Injection System WPSF100, WPSF100W, WPSF100T for masonry |           |
|-------------------------------------------------------------------|-----------|
| Performances                                                      | Annex C 1 |
| Characteristic resistance, displacement                           |           |
| β-factors for job site testing under tension load                 |           |

Page 16/16 of ETA 16/0541 issued of 27/06/2016



# Find out how we can support

Would you like to find out more about any of the solutions described in this brochure? Or would you like to discuss how we could support you find the best possible solution for your project? Get in touch today!

#### Other countries

Walraven International

P.O. Box 15 3640 AA Mijdrecht (NL) Tel. +31 (0)297 23 30 00 Fax +31 (0)297 23 30 99 export@walraven.com

#### Walraven Group

$$\label{eq:mijdrecht (NL)} \begin{split} \text{Mijdrecht (NL)} \cdot \overline{\text{Tienen (BE)}} \cdot \text{Bayreuth (DE)} \cdot \text{Banbury (GB)} \cdot \text{Malm\"o (SE)} \cdot \text{Grenoble (FR)} \cdot \text{Barcelona (ES)} \cdot \text{Krak\'ow (PL)} \\ \text{Mlad\'a Boleslav (CZ)} \cdot \text{Moscow (RU)} \cdot \text{Kyiv (UA)} \cdot \text{Detroit (US)} \cdot \text{Shanghai (CN)} \cdot \text{Dubai (AE)} \cdot \text{Budapest (HU)} \end{split}$$