



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



### European Technical Assessment

#### ETA-16/0461 of 6 June 2016

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product WPER500 Walraven Injection system for concrete Product family Bonded anchor for use in concrete to which the construction product belongs Manufacturer J. van Walraven B.V. Industrieweg 5 3641 RK MIJDRECHT NIEDERLANDE Manufacturing plant Walraven factory A3 This European Technical Assessment 27 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded issued in accordance with Regulation (EU) anchors", April 2013, No 305/2011, on the basis of used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.



#### European Technical Assessment ETA-16/0461

Page 2 of 27 | 6 June 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 27 | 6 June 2016

#### Specific Part

#### 1 Technical description of the product

The "WPER500 Walraven Injection System for concrete" is a bonded anchor consisting of a cartridge with injection mortar WPER500 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

#### 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                        | Performance           |
|---------------------------------------------------------------------------------|-----------------------|
| Characteristic resistance for design according to TR 029 and TR 045             | See Annex C 1 to C6   |
| Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045 | See Annex C 7 to C 12 |
| Displacements under tension and shear loads                                     | See Annex C 13 / C 14 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                     |
|--------------------------|-------------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for<br>Class A1 |
| Resistance to fire       | No performance determined (NPD)                 |

#### 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

#### 3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.



## European Technical Assessment ETA-16/0461

#### Page 4 of 27 | 6 June 2016

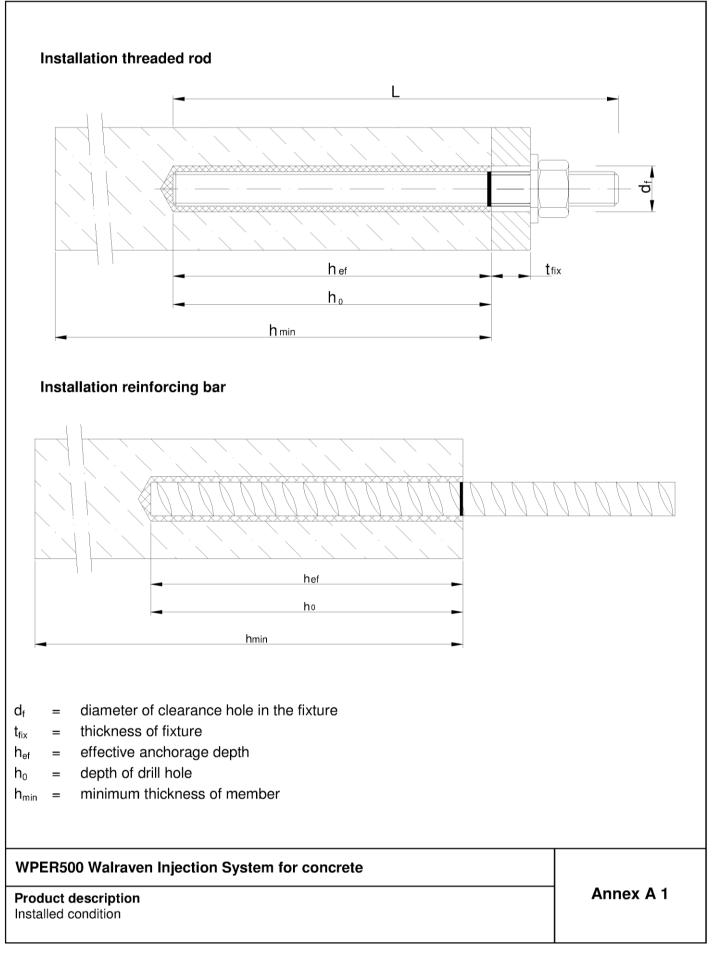
English translation prepared by DIBt

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

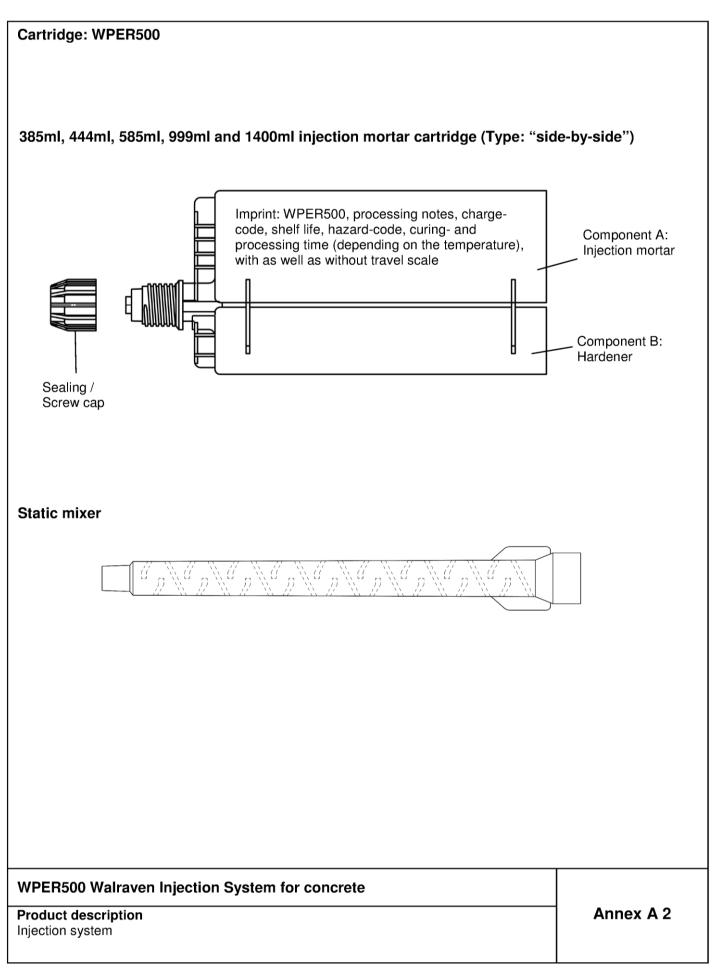
In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

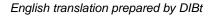
The system to be applied is. T

## 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

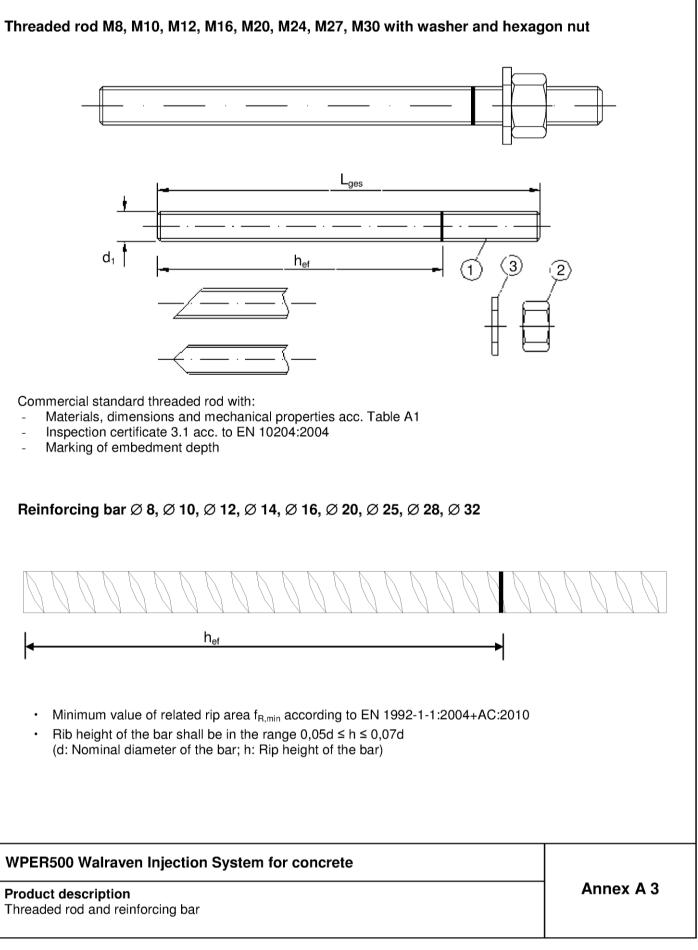

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 6 June 2016 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* Baderschneider


## Page 5 of European Technical Assessment ETA-16/0461 of 6 June 2016


















### Table A1: Materials

| PartDesignationMaterialSteel,zinc plated $\geq$ 5 µm acc. to EN ISO 4042:1999 orSteel,hot-dip galvanised $\geq$ 40 µm acc. to EN ISO1461:2009 and EN ISO 10684:2004+AC:2001Anchor rodSteel, EN 10087:1998 or EN 10263:20011Anchor rodProperty class 4.6, 5.8, 8.8, EN 1993-1-8:202Hexagon nut, EN ISO 4032:2012Steel acc. to EN 10087:1998 or EN 10263:22Hexagon nut, EN ISO 4032:2012Property class 4 (for class 4.6 rod) EN ISO 83Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000Steel, zinc plated or hot-dip galvanised1Anchor rodMaterial 1.4401 / 1.4404 / 1.4571, EN 10088<br>> M24: Property class 50 EN ISO 3506-1:20<br>$\leq$ M24: Property class 70 EN ISO 3506-1:20<br>$\leq$ M24: Property class 70 EN ISO 3506-1:20<br>$\leq$ M24: Property class 50 (for class 50 rod) EN2Hexagon nut, EN ISO 4032:2012Material 1.4401 / 1.4404 / 1.4571 EN 10088<br>> M24: Property class 50 EN ISO 3506-1:20<br>$\leq$ M24: Property class 50 (for class 50 rod) EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 005+AC:2009<br>2001<br>898-2:2012,<br>898-2:2012, |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Steel, hot-dip galvanised $\geq$ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:201Anchor rodSteel, EN 10087:1998 or EN 10263:2001<br>Property class 4.6, 5.8, 8.8, EN 1993-1-8:20<br>A5 > 8% fracture elongation2Hexagon nut, EN ISO 4032:2012Steel acc. to EN 10087:1998 or EN 10263:2<br>Property class 4 (for class 4.6 rod) EN ISO 887:1998 or EN 10263:2<br>Property class 5 (for class 5.8 rod) EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000Steel, zinc plated or hot-dip galvanisedSteinless steel1Anchor rodMaterial 1.4401 / 1.4404 / 1.4571, EN 10088<br>> M24: Property class 50 EN ISO 3506-1:20<br>$\leq$ M24: Property class 70 EN ISO 3506-1:20<br>$\leq$ M24: Property class 70 EN ISO 3506-1:20<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 005+AC:2009<br>2001<br>898-2:2012,<br>898-2:2012, |
| 1Anchor rodSteel, EN 10087:1998 or EN 10263:2001<br>Property class 4.6, 5.8, 8.8, EN 1993-1-8:200<br>A_5 > 8% fracture elongation2Hexagon nut, EN ISO 4032:2012Steel acc. to EN 10087:1998 or EN 10263:22<br>Property class 4 (for class 4.6 rod) EN ISO 8<br>Property class 5 (for class 5.8 rod) EN ISO 8<br>Property class 5 (for class 5.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 005+AC:2009<br>2001<br>898-2:2012,<br>898-2:2012, |
| 1Anchor rodProperty class 4.6, 5.8, 8.8, EN 1993-1-8:20<br>$A_5 > 8\%$ fracture elongation2Hexagon nut, EN ISO 4032:2012Steel acc. to EN 10087:1998 or EN 10263:2<br>Property class 4 (for class 4.6 rod) EN ISO 8<br>Property class 5 (for class 5.8 rod) EN ISO 8<br>Property class 5 (for class 5.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2001<br>898-2:2012,<br>898-2:2012,                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2001<br>898-2:2012,<br>898-2:2012,                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 898-2:2012,<br>898-2:2012,                        |
| 2Hexagon nut, EN ISO 4032:2012Property class 5 (for class 5.8 rod) EN ISO 8<br>Property class 8 (for class 5.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Steel, zinc plated or hot-dip galvanised3Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000Steel, zinc plated or hot-dip galvanised3Stainless steel1Anchor rodMaterial 1.4401 / 1.4404 / 1.4571, EN 10088<br>> M24: Property class 50 EN ISO 3506-1:20<br>$\leq$ M24: Property class 70 EN ISO 3506-1:20<br>$A_5 > 8\%$ fracture elongation4Material 1.4401 / 1.4404 / 1.4571 EN 10088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 898-2:2012,                                       |
| Property class 5 (for class 5.8 rod) EN ISO 8<br>Property class 5 (for class 5.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Property class 8 (for class 8.8 rod) EN ISO 8<br>Steel, zinc plated or hot-dip galvanised3Washer, EN ISO 887:2006,<br>EN ISO 7094:2000Steel, zinc plated or hot-dip galvanised3EN ISO 7094:2000Steel, zinc plated or hot-dip galvanised5SteelMaterial 1.4401 / 1.4404 / 1.4571, EN 10088<br>> M24: Property class 50 EN ISO 3506-1:20<br>$\leq$ M24: Property class 70 EN ISO 3506-1:20<br>$A_5 > 8\%$ fracture elongation4Material 1.4401 / 1.4404 / 1.4571 EN 10088<br>$\leq$ M24: Property class 70 EN ISO 3506-1:20<br>$A_5 > 8\%$ fracture elongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| $\begin{array}{c c} & \text{Washer, EN ISO 887:2006,} \\ \hline \text{SN ISO 7089:2000, EN ISO 7093:2000 or} \\ \hline \text{EN ISO 7094:2000} \end{array} & \text{Steel, zinc plated or hot-dip galvanised} \\ \hline \textbf{Stainless steel} \\ \hline 1 & \text{Anchor rod} \end{array} & \begin{array}{c} \text{Material } 1.4401 / 1.4404 / 1.4571, EN 10088 \\ &> M24: \text{ Property class 50 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24: \text{ Property class 70 EN ISO 3506-1:20} \\ &\leq M24:  Property cl$ | 898-2:2012                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
| $ \begin{array}{c c} 1 & \mbox{Anchor rod} & \mbox{Material } 1.4401 \ / \ 1.4404 \ / \ 1.4571, \ EN \ 10088 \\ & > M24: \ Property \ class \ 50 \ EN \ ISO \ 3506-1:200 \\ & \le M24: \ Property \ class \ 70 \ EN \ ISO \ 3506-1:200 \\ & A_5 \ > \ 8\% \ fracture \ elongation \\ & \ Material \ 1.4401 \ / \ 1.4571 \ EN \ 10088: \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
| 1       Anchor rod       > M24: Property class 50 EN ISO 3506-1:20 $\leq$ M24: Property class 70 EN ISO 3506-1:20 $A_5 > 8\%$ fracture elongation         Material 1.4401 / 1.4404 / 1.4571 EN 10088:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 1       Anchor rod       > M24: Property class 50 EN ISO 3506-1:20 $\leq$ M24: Property class 70 EN ISO 3506-1:20 $A_5 > 8\%$ fracture elongation         Material 1.4401 / 1.4404 / 1.4571 EN 10088:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-1.2005                                          |
| I         Anchor rod         ≤ M24: Property class 70 EN ISO 3506-1:20           A <sub>5</sub> > 8% fracture elongation         Material 1.4401 / 1.4404 / 1.4571 EN 10088:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
| A <sub>5</sub> > 8% fracture elongation<br>Material 1.4401 / 1.4571 EN 10088:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| Material 1.4401 / 1.4404 / 1.4571 EN 10088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2005                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| ≤ M24: Property class 70 (for class 70 rod) E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| Washer, EN ISO 887:2006,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| 3 EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000 Material 1.4401, 1.4404 or 1.4571, EN 1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88-1:2005                                         |
| High corrosion resistance steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| Material 1.4529 / 1.4565, EN 10088-1:2005,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                 |
| > M24: Property class 50 EN ISO 3506-1:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 009                                               |
| 1 Anchor rod $\leq$ M24: Property class 50 EN ISO 3506-1:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 009                                               |
| $A_5 > 8\%$ fracture elongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| Material 1.4529 / 1.4565 EN 10088-1:2005,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
| 2 Hexagon nut, EN ISO 4032:2012 > M24: Property class 50 (for class 50 rod) E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EN ISO 3506-2:2009                                |
| ≤ M24: Property class 70 (for class 70 rod) E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EN ISO 3506-2:2009                                |
| Washer, EN ISO 887:2006,<br>3 EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000 HAISO 7093:2000 Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
| Reinforcing bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| Bars and de-coiled rods class B or C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| 1 Rebar<br>EN 1992-1-1:2004+AC:2010, Annex C $f_{yk}$ and k according to NDP or NCL of EN 198<br>$f_{uk} = f_{tk} = k \cdot f_{yk}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92-1-1/NA:2013                                    |
| $f_{uk} = f_{tk} = k \cdot f_{yk}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| WPER500 Walraven Injection System for concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
| Product description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annex A 4                                         |
| Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |



#### Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

#### **Base materials:**

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- · Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

#### **Temperature Range:**

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
  position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
  reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
  - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
     CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
  - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
  - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
  - Fastenings in stand-off installation or with a grout layer are not allowed.

#### Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

#### WPER500 Walraven Injection System for concrete

#### Intended Use

Specifications



| Anchor size                               |                             | M 8 | M 10                             | M 12 | M 16 | M 20 | M 24                              | M 27 | M 30 |
|-------------------------------------------|-----------------------------|-----|----------------------------------|------|------|------|-----------------------------------|------|------|
| Nominal drill hole diameter               | d <sub>0</sub> [mm] =       | 10  | 12                               | 14   | 18   | 24   | 28                                | 32   | 35   |
| Effective encharges depth                 | h <sub>ef,min</sub> [mm] =  | 60  | 60                               | 70   | 80   | 90   | 96                                | 108  | 120  |
| Effective anchorage depth                 | h <sub>ef,max</sub> [mm] =  | 96  | 120                              | 144  | 192  | 240  | 288                               | 324  | 360  |
| Diameter of clearance hole in the fixture | d <sub>f</sub> [mm] ≤       | 9   | 12                               | 14   | 18   | 22   | 26                                | 30   | 33   |
| Diameter of steel brush                   | d <sub>b</sub> [mm] ≥       | 12  | 14                               | 16   | 20   | 26   | 30                                | 34   | 37   |
| Torque moment                             | T <sub>inst</sub> [Nm] ≤    | 10  | 20                               | 40   | 80   | 120  | 160                               | 180  | 200  |
| Thickness of fixture                      | t <sub>fix,min</sub> [mm] > | 0   |                                  |      |      |      |                                   |      |      |
| Thickness of fixture                      | t <sub>fix,max</sub> [mm] < |     |                                  |      | 15   | 00   |                                   |      |      |
| Minimum thickness of<br>member            | h <sub>min</sub> [mm]       |     | <sub>ef</sub> + 30 m<br>≥ 100 mn |      |      |      | h <sub>ef</sub> + 2d <sub>0</sub> |      |      |
| Minimum spacing                           | s <sub>min</sub> [mm]       | 40  | 50                               | 60   | 80   | 100  | 120                               | 135  | 150  |
| Minimum edge distance                     | c <sub>min</sub> [mm]       | 40  | 50                               | 60   | 80   | 100  | 120                               | 135  | 150  |

#### Table B2: Installation parameters for rebar

|                            | Ø <b>8</b>                                                                                                                          | Ø 10                                                                                                                                                                                                | Ø 12                                                                                                                                                                                                                                                                            | Ø 14                                                                                                                                                                                                                                                                                                         | Ø 16                                                  | Ø <b>20</b>                                           | Ø 25                                                  | Ø 28                                                  | Ø <b>32</b>                                           |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| d <sub>0</sub> [mm] =      | 12                                                                                                                                  | 14                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                           | 20                                                    | 24                                                    | 32                                                    | 35                                                    | 40                                                    |
| h <sub>ef,min</sub> [mm] = | 60                                                                                                                                  | 60                                                                                                                                                                                                  | 70                                                                                                                                                                                                                                                                              | 75                                                                                                                                                                                                                                                                                                           | 80                                                    | 90                                                    | 100                                                   | 112                                                   | 128                                                   |
| h <sub>ef,max</sub> [mm] = | 96                                                                                                                                  | 120                                                                                                                                                                                                 | 144                                                                                                                                                                                                                                                                             | 168                                                                                                                                                                                                                                                                                                          | 192                                                   | 240                                                   | 300                                                   | 336                                                   | 384                                                   |
| d <sub>b</sub> [mm] ≥      | 14                                                                                                                                  | 16                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                           | 22                                                    | 26                                                    | 34                                                    | 37                                                    | 41,5                                                  |
| h <sub>min</sub> [mm]      |                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                              |                                                       | h <sub>ef</sub> + 2d <sub>0</sub>                     | )                                                     |                                                       |                                                       |
| s <sub>min</sub> [mm]      | 40                                                                                                                                  | 50                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                              | 70                                                                                                                                                                                                                                                                                                           | 80                                                    | 100                                                   | 125                                                   | 140                                                   | 160                                                   |
| c <sub>min</sub> [mm]      | 40                                                                                                                                  | 50                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                              | 70                                                                                                                                                                                                                                                                                                           | 80                                                    | 100                                                   | 125                                                   | 140                                                   | 160                                                   |
|                            | h <sub>ef,min</sub> [mm] =<br>h <sub>ef,max</sub> [mm] =<br>d <sub>b</sub> [mm] ≥<br>h <sub>min</sub> [mm]<br>s <sub>min</sub> [mm] | $\begin{array}{c} d_{0} \ [mm] = & 12 \\ h_{ef,min} \ [mm] = & 60 \\ h_{ef,max} \ [mm] = & 96 \\ d_{b} \ [mm] \ge & 14 \\ h_{min} \ [mm] & \begin{array}{c} h_{ef} + 3 \\ \ge & 100 \\ \end{array}$ | $\begin{array}{c c} d_{0} \ [mm] = & 12 & 14 \\ \hline h_{ef,min} \ [mm] = & 60 & 60 \\ \hline h_{ef,max} \ [mm] = & 96 & 120 \\ \hline d_{b} \ [mm] \geq & 14 & 16 \\ \hline h_{min} \ [mm] & \begin{array}{c} h_{ef} + 30 \ mm \\ \geq & 100 \ mm \\ \end{array} \end{array}$ | $\begin{array}{c cccc} d_0 \ [mm] = & 12 & 14 & 16 \\ \hline h_{ef,min} \ [mm] = & 60 & 60 & 70 \\ \hline h_{ef,max} \ [mm] = & 96 & 120 & 144 \\ \hline d_b \ [mm] \ge & 14 & 16 & 18 \\ \hline h_{min} \ [mm] & \frac{h_{ef} + 30 \ mm}{\ge 100 \ mm} \\ \hline s_{min} \ [mm] & 40 & 50 & 60 \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### WPER500 Walraven Injection System for concrete

Intended Use

Installation parameters



#### Steel brush



#### Table B3: Parameter cleaning and setting tools

| Threaded<br>Rod | Rebar | d₀<br>Drill bit - Ø | d₅<br>Brush - Ø | d <sub>b,min</sub><br>min.<br>Brush - Ø | Piston<br>plug          |
|-----------------|-------|---------------------|-----------------|-----------------------------------------|-------------------------|
| (mm)            | (mm)  | (mm)                | (mm)            | (mm)                                    | (No.)                   |
| M8              |       | 10                  | 12              | 10,5                                    |                         |
| M10             | 8     | 12                  | 14              | 12,5                                    |                         |
| M12             | 10    | 14                  | 16              | 14,5                                    | No                      |
|                 | 12    | 16                  | 18              | 16,5                                    | piston plug<br>required |
| M16             | 14    | 18                  | 20              | 18,5                                    | ] '                     |
|                 | 16    | 20                  | 22              | 20,5                                    | ]                       |
| M20             | 20    | 24                  | 26              | 24,5                                    | # 24                    |
| M24             |       | 28                  | 30              | 28,5                                    | # 28                    |
| M27             | 25    | 32                  | 34              | 32,5                                    | # 32                    |
| M30             | 28    | 35                  | 37              | 35,5                                    | # 35                    |
|                 | 32    | 40                  | 41,5            | 40,5                                    | # 38                    |





Hand pump (volume 750 ml) Drill bit diameter (d<sub>0</sub>): 10 mm to 20 mm



**Recommended compressed air tool (min 6 bar)** Drill bit diameter (d<sub>0</sub>): 10 mm to 40 mm

## Piston plug for overhead or horizontal installation Drill bit diameter $(d_0)$ : 24 mm to 40 mm

#### WPER500 Walraven Injection System for concrete

#### Intended Use

Cleaning and setting tools



| Installation inst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ructions                                                                                                                                                                                                                                                              |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Drill with hammer drill a hole into the base material to the size a depth required by the selected anchor (Table B1 or Table B2). I drill hole: the drill hole shall be filled with mortar                                                                         |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attention! Standing water in the bore hole must be removed                                                                                                                                                                                                            | d before cleaning.               |
| 2x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2a. Starting from the bottom or back of the bore hole, blow the hole<br>compressed air (min. 6 bar) or a hand pump (Annex B 3) a mini<br>the bore hole ground is not reached an extension shall be used                                                               | mum of two times. If             |
| or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The hand-pump can be used for anchor sizes up to bore hole d                                                                                                                                                                                                          | iameter 20 mm.                   |
| 2x }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For bore holes larger than 20 mm or deeper 240 mm, compress <b>must</b> be used.                                                                                                                                                                                      | sed air (min. 6 bar)             |
| ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2b. Check brush diameter (Table B3) and attach the brush to a drill<br>or a battery screwdriver. Brush the hole with an appropriate size<br>> d <sub>b,min</sub> (Table B3) a minimum of two times.                                                                   | ed wire brush                    |
| 2x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If the bore hole ground is not reached with the brush, a brush ex shall be used (Table B3).                                                                                                                                                                           | xtension                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2c. Finally blow the hole clean again with compressed air (min. 6 based (Annex B 3) a minimum of two times. If the bore hole ground is extension shall be used.<br>The hand-pump can be used for anchor sizes up to bore hole defined to bore hole defined and based. | not reached an<br>iameter 20 mm. |
| or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For bore holes larger than 20 mm or deeper 240 mm, compress<br><u>must</u> be used.                                                                                                                                                                                   | sed air (min. 6 bar)             |
| 2x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | After cleaning, the bore hole has to be protected against re<br>an appropriate way, until dispensing the mortar in the bore<br>the cleaning repeated has to be directly before dispensing<br>In-flowing water must not contaminate the bore hole again.               | hole. If necessary, the mortar.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended w (Table B4) as well as for new cartridges, a new static-mixer sha     | orking time                      |
| Careford and a second s | 4. Prior to inserting the anchor rod into the filled bore hole, the pose embedment depth shall be marked on the anchor rods.                                                                                                                                          | sition of the                    |
| min. 3 full<br>stroke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. Prior to dispensing into the anchor hole, squeeze out separately full strokes and discard non-uniformly mixed adhesive component shows a consistent grey colour. For foil tube cartridges is must be minimum of six full strokes.                                  | nts until the mortar             |
| WPER500 Walrave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en Injection System for concrete                                                                                                                                                                                                                                      |                                  |
| Intended Use<br>Installation instructior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | าร                                                                                                                                                                                                                                                                    | Annex B 4                        |



| Installation inst | ructions (continuation)                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a piston plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ working times given in Table B4. |
|                   | Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to<br>ensure positive distribution of the adhesive until the embedment depth is reached.<br>The anchor should be free of dirt, grease, oil or other foreign material.                                                                                                                                                                                         |
|                   | 8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).                                                                                                                                                                 |
| 20°C e.g.         | 9. Allow the adhesive to cure to the specified time prior to applying any load or torque.<br>Do not move or load the anchor until it is fully cured (attend Table B4).                                                                                                                                                                                                                                                                             |
|                   | <ol> <li>After full curing, the add-on part can be installed with the max. torque<br/>(Table B2) by using a calibrated torque wrench.</li> </ol>                                                                                                                                                                                                                                                                                                   |

#### Table B4: Minimum curing time

| Concrete<br>temperature | Gelling-<br>working time | Minimum<br>curing time in<br>dry concrete | Minimum<br>curing time in<br>wet concrete |  |  |
|-------------------------|--------------------------|-------------------------------------------|-------------------------------------------|--|--|
| ≥ 5 °C                  | 120 min                  | 50 h                                      | 100 h                                     |  |  |
| ≥ + 10 °C               | 90 min                   | 30 h                                      | 60 h                                      |  |  |
| ≥ + 20 °C               | 30 min                   | 10 h                                      | 20 h                                      |  |  |
| ≥ + 30 °C               | 20 min                   | 6 h                                       | 12 h                                      |  |  |
| ≥ + 40 °C               | 12 min                   | 4 h                                       | 8 h                                       |  |  |

#### WPER500 Walraven Injection System for concrete

Intended Use Installation instructions (continuation) Curing time



| Steel, property class 3.4.5       Nikk,s       [kN]       18       29       42       78       122       176       236         Characteristic tension resistance,<br>Steel, property class 5.8       Nikk,s       [kN]       18       29       42       78       122       176       236         Characteristic tension resistance,<br>Steel, property class 5.8       Nikk,s       [kN]       29       46       67       125       196       282       366         Characteristic tension resistance,<br>Stainless steel At and HCR,<br>property class 50 (>M24) and 70 (< M24)       Nikk,s       [kN]       26       41       59       110       171       247       236         Combined pull-out and concrete cone failure       Nikk,s       [kN]       26       41       59       110       171       247       236         Characteristic bond resistance in non-cracked concrete C20/25       Temperature range I:       dry and wet concrete $\tau_{10k,wr}$ [N/mm²]       15       14       13       10       9,5       8,5       7,5         Temperature range II:       dry and wet concrete $\tau_{10k,wr}$ [N/mm²]       9,5       9,0       8,5       7,5       7,0       6,0       5,5         Temperature range III:       dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ichor size threaded rod       |                        |                        |                      | M 8     | M 10                 | M 12                    | M 16                   | M 20                   | M24         | M 27            | M 30 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|------------------------|----------------------|---------|----------------------|-------------------------|------------------------|------------------------|-------------|-----------------|------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eel failure                   |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
| Steel, property class 5.8       Nnk.s       [NN m.s       [NN m.s]       [N m.s]       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eel, property class 4.6       |                        | N <sub>Rk,s</sub>      | [kN]                 | 15      | 23                   | 34                      | 63                     | 98                     | 141         | 184             | 224  |
| Steel, property class 8.8       Nmks       [KN]       29       46       67       125       196       282       366         Characteristic tension resistance,<br>property class 50 (>M24) and 70 (≤ M24)       Nmks       [KN]       26       41       59       110       171       247       230         Combined pull-out and concrete cone failure       Combined pull-out and concrete cone failure       [KN]       26       41       59       110       171       247       230         Combined pull-out and concrete cone failure       Combined pull-out and concrete concrete C20/25       [KN]       15       15       14       13       12       12         Characteristic bond resistance in non-cracked concrete $\tau_{Rk,upr}$ [N/mm²]       15       14       13       10       9,5       8,5       7,5       7,5         Temperature range I:       dry and wet concrete $\tau_{Rk,upr}$ [N/mm²]       9,5       9,5       9,0       8,5       8,0       7,5       7,0       6,5         Temperature range II:       dry and wet concrete $\tau_{Rk,upr}$ [N/mm²]       8,5       8,5       8,0       7,5       7,0       6,5         Temperature range III:       dry and wet concrete $\tau_{Rk,upr}$ [N/mm²] </td <td></td> <td>tance,</td> <td>N<sub>Rk,s</sub></td> <td>[kN]</td> <td>18</td> <td>29</td> <td>42</td> <td>78</td> <td>122</td> <td>176</td> <td>230</td> <td>280</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | tance,                 | N <sub>Rk,s</sub>      | [kN]                 | 18      | 29                   | 42                      | 78                     | 122                    | 176         | 230             | 280  |
| Stainless steel A4 and HCR, property class 50 (sM24) and 70 (≤ M24)       N <sub>Rk.s</sub> [kN]       26       41       59       110       171       247       230         Combined pull-out and concrete cone failure         Characteristic bond resistance in non-cracked concrete C20/25         Temperature range I:<br>40°C/24°C       dry and wet concrete<br>flooded bore hole $\tau_{Rk.uer}$ [N/mm²]       15       15       14       13       12       12         Temperature range I:<br>40°C/24°C       dry and wet concrete<br>flooded bore hole $\tau_{Rk.uer}$ [N/mm²]       15       14       13       10       9,5       8,5       7,5       7,5       7,5       7,5       7,5       7,5       7,5       7,5       7,0       6,5       6,5         Temperature range II:<br>60°C/43°C       dry and wet concrete<br>flooded bore hole $\tau_{Rk.uer}$ [N/mm²]       9,5       9,5       9,0       8,5       7,5       7,0       6,5         Temperature range III:<br>72°C/43°C       dry and wet concrete<br>flooded bore hole $\tau_{Rk.uer}$ [N/mm²]       8,5       8,5       8,0       7,5       7,0       6,0       5,5         Temperature range III:<br>72°C/43°C       dry and wet concrete<br>flooded bore hole $\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | tance,                 | N <sub>Rk,s</sub>      | [kN]                 | 29      | 46                   | 67                      | 125                    | 196                    | 282         | 368             | 449  |
| $\begin{array}{c c c c c c c } \mbox{Characteristic bond resistance in non-cracked concrete C20/25} \\ \hline Temperature range I: \\ 40^{\circ}C/24^{\circ}C & \hline 10 ded bore hole & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stainless steel A4 and HCR,   |                        | $N_{{\sf R}k,s}$       | [kN]                 | 26      | 41                   | 59                      | 110                    | 171                    | 247         | 230             | 281  |
| $\begin{array}{c c c c c c c } Temperature range I: \\ 40^{\circ}C/24^{\circ}C & \hline flooded bore hole & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mbined pull-out and co        | oncrete cone failure   |                        |                      |         |                      |                         | -                      |                        |             | -               |      |
| $\begin{array}{c c c c c c c } \mbox{Temperature range I:} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aracteristic bond resistar    | nce in non-cracked con | crete C20/2            | 5                    |         |                      |                         |                        |                        |             |                 |      |
| $\frac{11000000 \text{ bore hole}}{1000000 \text{ bore hole}} = \frac{1}{\tau_{\text{Fik,ucr}}} [N/\text{mm}^2] = 15 = 14 = 13 = 10 = 9,5 = 8,5 = 7,5 = 7,5 = 7,5 = 7,5 = 7,5 = 7,5 = 7,5 = 7,5 = 7,0 = 6,5 = 7,5 = 7,0 = 6,5 = 7,5 = 7,0 = 7,5 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 6,5 = 7,5 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = 7,0 = $                                                                                                                                                                                                                                                                                                                                                                                                                | mperature range I:            | dry and wet concrete   | $\tau_{\text{Rk,ucr}}$ | [N/mm²]              | 15      | 15                   | 15                      | 14                     | 13                     | 12          | 12              | 12   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | °Ċ/24°C                       | flooded bore hole      | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ] | 15      | 14                   | 13                      | 10                     | 9,5                    | 8,5         | 7,5             | 7,0  |
| $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mperature range II:           | dry and wet concrete   | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ] | 9,5     | 9,5                  | 9,0                     | 8,5                    | 8,0                    | 7,5         | 7,5             | 7,5  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | °Ċ/43°C                       | flooded bore hole      | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ] | 9,5     | 9,5                  | 9,0                     | 8,5                    | 7,5                    | 7,0         | 6,5             | 6,0  |
| $\frac{100 \text{ ded bore hole}}{\text{ thoded bore hole}}  \frac{\tau_{\text{Rk,ucr}}}{\tau_{\text{Rk,ucr}}}  \frac{[\text{N/mm}^2]}{8,5}  \frac{8,5}{8,0}  \frac{7,5}{7,0}  \frac{6,0}{5,5}  \frac{5,5}{6,0}  \frac{5,5}{5,5}  \frac{1,04}{5,5}  \frac{1,04}{5,5}  \frac{1,04}{5,5}  \frac{1,04}{5,5}  \frac{1,08}{5,5}  \frac{1,08}{5$ | mperature range III:          | dry and wet concrete   | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ] | 8,5     | 8,5                  | 8,0                     | 7,5                    | 7,0                    | 7,0         | 6,5             | 6,5  |
| Increasing factors for concrete<br>$\Psi_c$ C40/501,08C40/501,10Splitting failureEdge distance $c_{cr,sp}$ [mm] $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) $\gamma_2$ 1,21,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .°Ċ/43°C                      | flooded bore hole      | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ] | 8,5     | 8,5                  | 8,0                     | 7,5                    | 7,0                    | 6,0         | 5,5             | 5,5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        | C30/37                 |                      |         |                      |                         | 1,                     | 04                     |             |                 |      |
| C50/601,10Splitting failureEdge distance $c_{cr,sp}$ [mm] $1,0 \cdot h_{ef} \leq 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \leq 2,4 \cdot h_{ef}$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) $\gamma_2$ 1,21,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C C                           |                        | C40/50                 |                      | 1,08    |                      |                         |                        |                        |             |                 |      |
| Edge distance $c_{cr,sp}$ [mm] $1,0 \cdot h_{ef} \leq 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \leq 2,4 \cdot h_{ef}$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) $\gamma_2$ 1,21,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                        | C50/60                 |                      | 1,10    |                      |                         |                        |                        |             |                 |      |
| Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) $\gamma_2$ 1,21,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | litting failure               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
| Installation safety factor (dry and wet concrete) $\gamma_2$ 1,2 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ge distance                   |                        | C <sub>cr,sp</sub>     | [mm]                 |         | 1,0                  | ) ⋅ h <sub>ef</sub> ≤ 2 | 2 · h <sub>ef</sub> (2 | $5 - \frac{h}{h_{ef}}$ | ) ≤ 2,4 · I | ר <sub>ef</sub> |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ial distance                  |                        | S <sub>cr,sp</sub>     | [mm]                 |         | 2 c <sub>cr,sp</sub> |                         |                        |                        |             |                 |      |
| Installation safety factor (flooded bore hole) γ <sub>2</sub> 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stallation safety factor (dr  | y and wet concrete)    | γ2                     |                      | 1,2 1,4 |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stallation safety factor (flo | ooded bore hole)       | γ2                     | 1,4                  |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                        |                        |                      |         |                      |                         |                        |                        |             |                 |      |

#### WPER500 Walraven Injection System for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)



| Anchor size threaded r                                                                                                                                                          | od                        |                                           |                      | M 12 | M 16 | M 20                            | M24         | M 27       | M 30  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------|------|------|---------------------------------|-------------|------------|-------|--|
| Steel failure                                                                                                                                                                   |                           |                                           |                      |      |      |                                 |             |            |       |  |
| Characteristic tension re<br>Steel, property class 4.6                                                                                                                          | ,                         | $N_{Rk,s} = N_{Rk,s,seis}$                | [kN]                 | 34   | 63   | 98                              | 141         | 184        | 224   |  |
| Characteristic tension resistance,<br>Steel, property class 5.8                                                                                                                 |                           | N <sub>Rk,s</sub> =N <sub>Rk,s,seis</sub> | [kN]                 | 42   | 78   | 122                             | 176         | 230        | 280   |  |
| Characteristic tension resistance,<br>Steel, property class 8.8<br>Characteristic tension resistance,<br>Stainless steel A4 and HCR,<br>property class 50 (>M24) and 70 (≤ M24) |                           | N <sub>Rk,s</sub> =N <sub>Rk,s,seis</sub> | [kN]                 | 67   | 125  | 196                             | 282         | 368        | 449   |  |
|                                                                                                                                                                                 |                           | N <sub>Rk,s</sub> =N <sub>Rk,s,seis</sub> | [kN]                 | 59   | 110  | 171                             | 247         | 230        | 281   |  |
| Combined pull-out and                                                                                                                                                           | concrete cone failure     |                                           |                      |      |      |                                 |             |            |       |  |
| Characteristic bond resis                                                                                                                                                       | stance in cracked concret | e C20/25                                  |                      |      |      |                                 |             |            |       |  |
|                                                                                                                                                                                 | $\tau_{\rm Rk,cr}$        | [N/mm²]                                   | 7,5                  | 6,5  | 6,0  | 5,5                             | 5,5         | 5,5        |       |  |
|                                                                                                                                                                                 | dry and wet concrete      | $\tau_{Rk,seis,C1}$                       | [N/mm²]              | 7,1  | 6,2  | 5,7                             | 5,5         | 5,5        | 5,5   |  |
| Temperature range I:                                                                                                                                                            |                           | $\tau_{\text{Rk,seis,C2}}$                | [N/mm²]              | 2,4  | 2,2  | No Performance Determined (NPD) |             |            |       |  |
| 10°C/24°C                                                                                                                                                                       |                           | $\tau_{\text{Rk,cr}}$                     | [N/mm²]              | 7,5  | 6,0  | 5,0                             | 4,5         | 4,0        | 4,0   |  |
|                                                                                                                                                                                 | flooded bore hole         | $\tau_{Rk,seis,C1}$                       | [N/mm²]              | 7,1  | 5,8  | 4,8                             | 4,5         | 4,0        | 4,0   |  |
|                                                                                                                                                                                 |                           | $\tau_{\text{Rk,seis,C2}}$                | [N/mm²]              | 2,4  | 2,1  | No Pe                           | rformance [ | Determined | (NPD) |  |
|                                                                                                                                                                                 | dry and wet concrete      | $\tau_{\text{Rk,cr}}$                     | [N/mm²]              | 4,5  | 4,0  | 3,5                             | 3,5         | 3,5        | 3,5   |  |
|                                                                                                                                                                                 |                           | $\tau_{Rk,seis,C1}$                       | [N/mm²]              | 4,3  | 3,8  | 3,4                             | 3,5         | 3,5        | 3,5   |  |
| Temperature range II:                                                                                                                                                           |                           | $\tau_{\text{Rk,seis,C2}}$                | [N/mm²]              | 1,4  | 1,4  | No Performance Determined (NPD) |             |            |       |  |
| 60°Ċ/43°C                                                                                                                                                                       | flooded bore hole         | $\tau_{\text{Rk,cr}}$                     | [N/mm²]              | 4,5  | 4,0  | 3,5                             | 3,5         | 3,5        | 3,5   |  |
|                                                                                                                                                                                 |                           | $\tau_{Rk,seis,C1}$                       | [N/mm²]              | 4,3  | 3,8  | 3,4                             | 3,5         | 3,5        | 3,5   |  |
|                                                                                                                                                                                 |                           | $\tau_{\text{Rk,seis,C2}}$                | [N/mm²]              | 1,4  | 1,4  | No Performance Determined (NPI  |             |            | (NPD) |  |
|                                                                                                                                                                                 |                           | $\tau_{\rm Rk,cr}$                        | [N/mm²]              | 4,0  | 3,5  | 3,0                             | 3,0         | 3,0        | 3,0   |  |
|                                                                                                                                                                                 | dry and wet concrete      | $\tau_{\text{Rk,seis,C1}}$                | [N/mm²]              | 3,9  | 3,4  | 3,0                             | 3,0         | 3,0        | 3,0   |  |
| Temperature range III:<br>72°C/43°C                                                                                                                                             |                           | $\tau_{\text{Rk,seis,C2}}$                | [N/mm <sup>2</sup> ] | 1,3  | 1,2  | No Pe                           | rformance [ | Determined | (NPD) |  |
|                                                                                                                                                                                 |                           | $\tau_{\rm Rk,cr}$                        | [N/mm²]              | 4,0  | 3,5  | 3,0                             | 3,0         | 3,0        | 3,0   |  |
|                                                                                                                                                                                 | flooded bore hole         | $\tau_{Rk,seis,C1}$                       | [N/mm <sup>2</sup> ] | 3,9  | 3,4  | 3,0                             | 3,0         | 3,0        | 3,0   |  |
|                                                                                                                                                                                 |                           | $\tau_{\text{Rk,seis,C2}}$                | [N/mm²]              | 1,3  | 1,2  | No Pe                           | rformance [ | Determined | (NPD) |  |
| ncreasing factors for co                                                                                                                                                        | noroto                    | C30/37                                    |                      |      |      | 1,                              | 04          |            |       |  |
| only static or quasi-stati                                                                                                                                                      |                           | C40/50                                    |                      |      |      | 1,                              | 08          |            |       |  |
| $\psi_{c}$                                                                                                                                                                      |                           | C50/60                                    |                      |      |      | 1,                              | 10          |            |       |  |
| nstallation safety factor                                                                                                                                                       | (dry and wet concrete)    | γ2                                        |                      | 1    | ,2   |                                 | 1,          | ,4         |       |  |
| Installation safety factor                                                                                                                                                      | (flooded bore hole)       | γ2                                        |                      |      |      | 1                               | ,4          |            |       |  |
|                                                                                                                                                                                 |                           | -                                         |                      |      |      |                                 |             |            |       |  |

#### WPER500 Walraven Injection System for concrete

#### Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to TR 029 and TR 045)



#### Table C3: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to TR 029 and TR 045) Anchor size threaded rod M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Steel failure without lever arm V<sub>Rk.s</sub> 7 12 17 49 71 92 112 [kN] 31 Characteristic shear resistance, No Performance 72 [kN] 14 27 42 56 88 V<sub>Rk,s,seis,C1</sub> Steel, property class 4.6 Determined [kN] (NPD) 13 25 No Performance Determined (NPD) V<sub>Rk,s,seis,C2</sub> $V_{Rk,s}$ [kN] 9 15 21 39 61 88 115 140 Characteristic shear resistance, No Performance 18 34 53 70 91 111 [kN] $V_{Rk,s,seis,C1}$ Steel, property class 5.8 Determined No Performance Determined (NPD) [kN] (NPD) 17 31 V<sub>Rk,s,seis,C2</sub> $V_{Rk.s}$ [kN] 15 23 34 63 98 141 184 224 Characteristic shear resistance. No Performance [kN] 30 55 85 111 145 177 V<sub>Rk,s,seis,C1</sub> Steel, property class 8.8 Determined 27 No Performance Determined (NPD) 50 V<sub>Rk,s,seis,C2</sub> [kN] (NPD) $V_{\mathsf{Rk},\mathsf{s}}$ [kN] 13 20 30 55 86 124 115 140 Characteristic shear resistance, No Performance Stainless steel A4 and HCR, 48 [kN] 26 75 98 91 111 V<sub>Rk,s,seis,C1</sub> Determined property class 50 (>M24) and 70 ( $\leq$ M24) [kN] 24 44 No Performance Determined (NPD) V<sub>Rk,s,seis,C2</sub> (NPD) Steel failure with lever arm [Nm] 15 30 52 133 260 449 666 900 M<sup>0</sup><sub>Rk,s</sub> Characteristic bending moment, [Nm] $M^0_{Rk,s,seis,C1}$ Steel, property class 4.6 No Performance Determined (NPD) M<sup>0</sup><sub>Rk,s,seis,C2</sub> [Nm] 37 166 833 1123 [Nm] 19 65 324 560 М<sup>0</sup><sub>Rk,s</sub> Characteristic bending moment, M<sup>0</sup><sub>Rk,s,seis,C1</sub> [Nm] Steel, property class 5.8 No Performance Determined (NPD) M<sup>0</sup><sub>Rk,s,seis,C2</sub> [Nm] [Nm] 30 60 105 266 519 896 1333 1797 М<sup>0</sup><sub>Rk,s</sub> Characteristic bending moment, [Nm] M<sup>0</sup>Rk,s,seis,C1 Steel, property class 8.8 No Performance Determined (NPD) M<sup>0</sup><sub>Rk,s,seis,C2</sub> [Nm] 1125 M<sup>0</sup><sub>Bk.s</sub> [Nm] 26 52 92 232 454 784 832 Characteristic bending moment, Stainless steel A4 and HCR, [Nm] M<sup>0</sup><sub>Rk,s,seis,C1</sub> property class 50 (>M24) and 70 ( $\leq$ M24) No Performance Determined (NPD) [Nm] M<sup>0</sup><sub>Rk,s,seis,C2</sub> Concrete pry-out failure Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded k [-] 2,0 Anchors Installation safety factor 1,0 $\gamma_2$ Concrete edge failure Installation safety factor 1,0 $\gamma_2$ WPER500 Walraven Injection System for concrete

#### Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to TR 029 and TR 045)



|                                                                  |                             |                     |         | tance for rebar under tension loads in<br>າ according to TR 029) |      |                       |                   |                      |                                       |                       |      |      |
|------------------------------------------------------------------|-----------------------------|---------------------|---------|------------------------------------------------------------------|------|-----------------------|-------------------|----------------------|---------------------------------------|-----------------------|------|------|
| Anchor size reinfor                                              | cing bar                    |                     | _       | Ø 8                                                              | Ø 10 | Ø 12                  | Ø 14              | Ø 16                 | Ø 20                                  | Ø 25                  | Ø 28 | Ø 32 |
| Steel failure                                                    |                             |                     |         |                                                                  |      |                       |                   | I                    |                                       |                       | 1    |      |
| Characteristic tension                                           | n resistance                | $N_{Rk,s}$          | [kN]    | A <sub>s</sub> • f <sub>uk</sub>                                 |      |                       |                   |                      |                                       |                       |      |      |
| Combined pull-out                                                | and concrete cone failu     | 'e                  |         |                                                                  |      |                       |                   |                      |                                       |                       |      |      |
| Characteristic bond r                                            | esistance in non-cracked    | concrete C          | 20/25   |                                                                  |      |                       |                   |                      |                                       |                       |      |      |
| Temperature range I                                              | $	au_{Rk,ucr}$              | [N/mm²]             | 14      | 14                                                               | 13   | 13                    | 12                | 12                   | 11                                    | 11                    | 11   |      |
| 40°C/24°C                                                        | flooded bore hole           | $\tau_{\rm Rk,ucr}$ | [N/mm²] | 14                                                               | 13   | 11                    | 10                | 9,5                  | 8,5                                   | 7,5                   | 7,0  | 6,0  |
| Temperature range I                                              | dry and wet<br>concrete     | $	au_{Rk,ucr}$      | [N/mm²] | 8,5                                                              | 8,5  | 8,0                   | 8,0               | 7,5                  | 7,0                                   | 7,0                   | 6,5  | 6,5  |
| 60°C/43°C                                                        | flooded bore hole           | $\tau_{\rm Rk,ucr}$ | [N/mm²] | 8,5                                                              | 8,5  | 8,0                   | 8,0               | 7,5                  | 7,0                                   | 6,0                   | 5,5  | 5,0  |
| Temperature range III:<br>72°C/43°C                              | dry and wet<br>II: concrete | $	au_{Rk,ucr}$      | [N/mm²] | 7,5                                                              | 7,5  | 7,5                   | 7,0               | 7,0                  | 6,5                                   | 6,0                   | 6,0  | 6,0  |
| 72°C/43°C flooded bore hole                                      |                             | $	au_{Rk,ucr}$      | [N/mm²] | 7,5                                                              | 7,5  | 7,5                   | 7,0               | 7,0                  | 6,0                                   | 5,5                   | 5,0  | 4,5  |
|                                                                  |                             | C30/37              |         | 1,04                                                             |      |                       |                   |                      |                                       |                       |      |      |
| Increasing factors for<br>Ψ°                                     | concrete                    | C40/50              |         | 1,08                                                             |      |                       |                   |                      |                                       |                       |      |      |
| -                                                                |                             | C50/60              |         |                                                                  |      |                       |                   | 1,10                 |                                       |                       |      |      |
| Splitting failure                                                |                             |                     |         |                                                                  |      |                       |                   |                      |                                       |                       |      |      |
| Edge distance                                                    |                             | C <sub>cr,sp</sub>  | [mm]    |                                                                  |      | 1,0 · h <sub>ef</sub> | ≤2·h <sub>e</sub> | <sub>of</sub> (2,5 - | $\left(\frac{h}{h_{ef}}\right) \le 2$ | 2,4 · h <sub>ef</sub> |      |      |
| Axial distance                                                   |                             | S <sub>cr,sp</sub>  | [mm]    |                                                                  |      |                       |                   | 2 c <sub>cr,sp</sub> |                                       |                       |      |      |
| Installation safety fac<br>concrete)                             | γ2                          |                     | 1,2 1,4 |                                                                  |      |                       |                   |                      |                                       |                       |      |      |
| Installation safety factor (flooded bore hole)<br>y <sub>2</sub> |                             |                     |         | 1,4                                                              |      |                       |                   |                      |                                       |                       |      |      |
|                                                                  |                             |                     |         |                                                                  |      |                       |                   |                      |                                       |                       |      |      |

#### WPER500 Walraven Injection System for concrete

Performances Characteristic val

Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)



|                                                           | Characteristic val          |                                              |         |      |      |      |                                 | ads in      | Ì    |      |
|-----------------------------------------------------------|-----------------------------|----------------------------------------------|---------|------|------|------|---------------------------------|-------------|------|------|
| Anchor size reinforci                                     | ng bar                      |                                              |         | Ø 12 | Ø 14 | Ø 16 | Ø 20                            | Ø <b>25</b> | Ø 28 | Ø 32 |
| Steel failure                                             |                             |                                              |         |      |      |      |                                 |             |      |      |
| Characteristic tension                                    | resistance                  | N <sub>Rk,s</sub> =N <sub>Rk,s,seis,C1</sub> | [kN]    |      |      |      | $A_{s}\boldsymbol{\cdot}f_{uk}$ |             |      |      |
| Combined pull-out a                                       | nd concrete cone failure    |                                              |         |      |      |      |                                 |             |      |      |
| Characteristic bond re                                    | sistance in cracked concret | e C20/25                                     |         |      |      |      |                                 |             |      |      |
|                                                           | dry and wet concrete        | $	au_{Rk,cr}$                                | [N/mm²] | 7,5  | 7,0  | 6,5  | 6,0                             | 5,5         | 5,5  | 5,5  |
| Temperature range I:                                      | dry and wer concrete        | $	au_{\text{Rk,seis,C1}}$                    | [N/mm²] | 6,9  | 6,4  | 6,2  | 5,7                             | 5,5         | 5,5  | 5,5  |
| 40°C/24°C                                                 | flooded bore hole           | $\tau_{\rm Rk,cr}$                           | [N/mm²] | 7,5  | 6,5  | 6,0  | 5,0                             | 4,5         | 4,0  | 4,0  |
|                                                           | hooded bore hole            | $\tau_{Rk,seis,C1}$                          | [N/mm²] | 6,9  | 6,0  | 5,7  | 4,8                             | 4,5         | 4,0  | 4,0  |
|                                                           |                             | $\tau_{Rk,cr}$                               | [N/mm²] | 4,5  | 4,0  | 4,0  | 3,5                             | 3,5         | 3,5  | 3,5  |
| Temperature range II:                                     | dry and wet concrete        | $\tau_{Rk,seis,C1}$                          | [N/mm²] | 4,1  | 3,7  | 3,8  | 3,3                             | 3,5         | 3,5  | 3,5  |
| 60°C/43°C                                                 |                             | $\tau_{Rk,cr}$                               | [N/mm²] | 4,5  | 4,0  | 4,0  | 3,5                             | 3,5         | 3,5  | 3,0  |
|                                                           | flooded bore hole           | $\tau_{Rk,seis,C1}$                          | [N/mm²] | 4,1  | 3,7  | 3,8  | 3,3                             | 3,5         | 3,5  | 3,0  |
|                                                           | dur, and wat apparets       | $\tau_{Rk,cr}$                               | [N/mm²] | 4,0  | 3,5  | 3,5  | 3,0                             | 3,0         | 3,0  | 3,0  |
| Temperature range III                                     | dry and wet concrete        | $\tau_{\text{Rk,seis,C1}}$                   | [N/mm²] | 3,7  | 3,2  | 3,3  | 2,9                             | 3,0         | 3,0  | 3,0  |
| 72°C/43°C                                                 |                             | $\tau_{Rk,cr}$                               | [N/mm²] | 4,0  | 3,5  | 3,5  | 3,0                             | 3,0         | 3,0  | 3,0  |
|                                                           | flooded bore hole           | $\tau_{\text{Rk,seis,C1}}$                   | [N/mm²] | 3,7  | 3,2  | 3,3  | 2,9                             | 3,0         | 3,0  | 3,0  |
|                                                           |                             | C30/37                                       | •       |      |      |      | 1,04                            |             |      |      |
| Increasing factors for a<br>(only static or quasi-static) |                             | C40/50                                       |         |      |      |      | 1,08                            |             |      |      |
| Ψc                                                        |                             | C50/60                                       |         |      |      |      | 1,10                            |             |      |      |
| Installation safety facto                                 | or (dry and wet concrete)   | γ2                                           |         |      | 1,2  |      |                                 | 1           | ,4   |      |
| Installation safety facto                                 | or (flooded bore hole)      | $\gamma_2$                                   |         |      |      |      | 1,4                             |             |      |      |

#### WPER500 Walraven Injection System for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to TR 029 and TR 045)



| Table C6: Characterist<br>and non-crae                                                       |                                |        |          |                             |          |          |                        |                       |                 |             | d    |
|----------------------------------------------------------------------------------------------|--------------------------------|--------|----------|-----------------------------|----------|----------|------------------------|-----------------------|-----------------|-------------|------|
| Anchor size reinforcing bar                                                                  |                                |        | Ø 8      | Ø 10                        | Ø 12     | Ø 14     | Ø 16                   | Ø 20                  | Ø <b>25</b>     | Ø <b>28</b> | Ø 32 |
| Steel failure without lever arm                                                              |                                |        |          |                             |          |          |                        |                       |                 |             |      |
|                                                                                              | V <sub>Rk,s</sub>              | [kN]   |          |                             |          | 0,       | 50 • A <sub>s</sub> •  | f <sub>uk</sub>       |                 |             |      |
| Characteristic shear resistance                                                              | $V_{Rk,s,seis,C1}$             | [kN]   | Deter    | lo<br>mance<br>mined<br>PD) |          |          | 0,                     | 44 • A <sub>s</sub> • | f <sub>uk</sub> |             |      |
| Steel failure with lever arm                                                                 |                                |        |          |                             |          |          |                        |                       |                 |             |      |
| Characteristic bending moment                                                                | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]   |          |                             |          | 1.       | .2 • W <sub>el</sub> • | f <sub>uk</sub>       |                 |             |      |
| Characteristic bending moment                                                                | $M^0_{Rk,s,seis,C1}$           | [Nm]   |          |                             | No F     | Performa | nce Dete               | rmined (N             | IPD)            |             |      |
| Concrete pry-out failure                                                                     |                                |        |          |                             |          |          |                        |                       |                 |             |      |
| Factor k in equation (5.7) of Technical<br>Report TR 029 for the design of bonded<br>anchors | k                              | [-]    |          |                             |          |          | 2,0                    |                       |                 |             |      |
| Installation safety factor                                                                   | γ2                             |        |          |                             |          |          | 1,0                    |                       |                 |             |      |
| Concrete edge failure                                                                        |                                |        |          |                             |          |          |                        |                       |                 |             |      |
| Installation safety factor                                                                   | γ2                             |        |          |                             |          |          | 1,0                    |                       |                 |             |      |
|                                                                                              |                                |        |          |                             |          |          |                        |                       |                 |             |      |
| WPER500 Walraven Injectio                                                                    | on System f                    | or con | crete    |                             |          |          |                        |                       | <b>A</b>        |             | •    |
| Performances<br>Characteristic values of resistance f<br>concrete, (Design according to TR 0 |                                |        | ads in c | racked a                    | and non- | -cracked | k                      |                       | Ann             | ex C (      | D    |



|                                                             |                            |                    |                      | M 8 | M 10 | M 12                   | M 16                  | M 20                   | M24                    | M 27 | М 30 |
|-------------------------------------------------------------|----------------------------|--------------------|----------------------|-----|------|------------------------|-----------------------|------------------------|------------------------|------|------|
| Steel failure                                               |                            |                    |                      |     |      |                        |                       |                        |                        |      |      |
| Characteristic tension resista<br>Steel, property class 4.6 | ance,                      | N <sub>Rk,s</sub>  | [kN]                 | 15  | 23   | 34                     | 63                    | 98                     | 141                    | 184  | 224  |
| Characteristic tension resist                               | ance,                      | N <sub>Rk.s</sub>  | [kN]                 | 18  | 29   | 42                     | 78                    | 122                    | 176                    | 230  | 280  |
| Steel, property class 5.8<br>Characteristic tension resista | ance,                      | N <sub>Rk.s</sub>  | [kN]                 | 29  | 46   | 67                     | 125                   | 196                    | 282                    | 368  | 449  |
| Steel, property class 8.8<br>Characteristic tension resista | ance.                      | INRk,s             |                      | 29  | 40   | 07                     | 125                   | 190                    | 202                    | 300  | 443  |
| Stainless steel A4 and HCR<br>property class 50 (>M24) an   | ,                          | $N_{Rk,s}$         | [kN]                 | 26  | 41   | 59                     | 110                   | 171                    | 247                    | 230  | 281  |
| Combined pull-out and co                                    | ncrete failure             |                    |                      |     |      |                        |                       |                        |                        |      |      |
| Characteristic bond resistan                                | ce in non-cracked concrete | e C20/25           |                      |     |      |                        |                       |                        |                        |      |      |
| Temperature range I:                                        | dry and wet concrete       | $	au_{Rk,ucr}$     | [N/mm <sup>2</sup> ] | 15  | 15   | 15                     | 14                    | 13                     | 12                     | 12   | 12   |
| 40°C/24°C                                                   | flooded bore hole          | $	au_{Rk,ucr}$     | [N/mm <sup>2</sup> ] | 15  | 14   | 13                     | 10                    | 9,5                    | 8,5                    | 7,5  | 7,0  |
| Temperature range II:                                       | dry and wet concrete       | $	au_{Rk,ucr}$     | [N/mm <sup>2</sup> ] | 9,5 | 9,5  | 9,0                    | 8,5                   | 8,0                    | 7,5                    | 7,5  | 7,5  |
| 60°C/43°C                                                   | flooded bore hole          | $\tau_{Rk,ucr}$    | [N/mm <sup>2</sup> ] | 9,5 | 9,5  | 9,0                    | 8,5                   | 7,5                    | 7,0                    | 6,5  | 6,0  |
| Temperature range III:                                      | dry and wet concrete       | $	au_{Rk,ucr}$     | [N/mm <sup>2</sup> ] | 8,5 | 8,5  | 8,0                    | 7,5                   | 7,0                    | 7,0                    | 6,5  | 6,5  |
| 72°C/43°C                                                   | flooded bore hole          | $	au_{Rk,ucr}$     | [N/mm <sup>2</sup> ] | 8,5 | 8,5  | 8,0                    | 7,5                   | 7,0                    | 6,0                    | 5,5  | 5,5  |
|                                                             | ·                          | C30/37             |                      |     |      |                        | 1,                    | 04                     |                        |      |      |
| ncreasing factors for concre<br>∉₀                          | ete                        | C40/50             |                      |     |      |                        | 1,                    | 08                     |                        |      |      |
| + C                                                         |                            | C50/60             |                      |     |      |                        | 1,                    | 10                     |                        |      |      |
| Factor according to<br>CEN/TS 1992-4-5 Section 6            | 223                        | k <sub>8</sub>     | [-]                  |     |      |                        | 10                    | ),1                    |                        |      |      |
| Concrete cone failure                                       |                            |                    |                      |     |      |                        |                       |                        |                        |      |      |
| Factor according to<br>CEN/TS 1992-4-5 Section 6            | 231                        | k <sub>ucr</sub>   | [-]                  |     |      |                        | 10                    | ),1                    |                        |      |      |
| Edge distance                                               | .2.0.1                     | C <sub>cr,N</sub>  | [mm]                 |     |      |                        | 1,5                   | i h <sub>ef</sub>      |                        |      |      |
| Axial distance                                              |                            | S <sub>cr,N</sub>  | [mm]                 |     |      |                        | 3,0                   | h <sub>ef</sub>        |                        |      |      |
| Splitting failure                                           |                            |                    |                      |     |      |                        |                       |                        |                        |      |      |
| Edge distance                                               |                            | C <sub>cr,sp</sub> | [mm]                 |     | 1    | ,0 ⋅ h <sub>ef</sub> ≤ | 2 · h <sub>ef</sub> 2 | $5 - \frac{h}{h_{ef}}$ | ≤ 2,4 · h <sub>a</sub> | ef   |      |
| Axial distance                                              |                            | S <sub>cr,sp</sub> | [mm]                 |     |      |                        | 2 c                   | cr,sp                  |                        |      |      |
| Installation safety factor (dry                             | and wet concrete)          | γinst              |                      |     | 1    | ,2                     |                       |                        | 1                      | ,4   |      |
| Installation actatulation (flag                             | oded bore hole)            | γinst              |                      |     |      |                        | 1                     | ,4                     |                        |      |      |

Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)



# Table C8:Characteristic values of resistance for threaded rods under tension loads in<br/>cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

| Anchor size threaded rod                                                                 | l                          |                                           |                      | M 12 | M 16 | M 20    | M24               | M27       | M30      |
|------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------|----------------------|------|------|---------|-------------------|-----------|----------|
| Steel failure                                                                            |                            |                                           |                      |      |      |         |                   |           |          |
| Characteristic tension resis<br>Steel, property class 4.6                                | tance,                     | N <sub>Rk,s</sub> =N <sub>Rk,s,seis</sub> | [kN]                 | 34   | 63   | 98      | 141               | 184       | 224      |
| Characteristic tension resis<br>Steel, property class 5.8                                |                            | N <sub>Rk,s</sub> =N <sub>Rk,s,seis</sub> | [kN]                 | 42   | 78   | 122     | 176               | 230       | 280      |
| Characteristic tension resis<br>Steel, property class 8.8                                |                            | $N_{Rk,s} = N_{Rk,s,seis}$                | [kN]                 | 67   | 125  | 196     | 282               | 368       | 449      |
| Characteristic tension resis<br>Stainless steel A4 and HCF<br>property class 50 (>M24) a | ٦,                         | $N_{\text{Rk,s}} = N_{\text{Rk,s,seis}}$  | [kN]                 | 59   | 110  | 171     | 247               | 230       | 281      |
| Combined pull-out and co                                                                 | oncrete failure            |                                           |                      |      |      |         |                   |           |          |
| Characteristic bond resista                                                              | nce in cracked concrete C2 | 0/25                                      |                      |      |      |         |                   |           |          |
|                                                                                          |                            | $\tau_{\rm Rk,cr}$                        | [N/mm <sup>2</sup> ] | 7,5  | 6,5  | 6,0     | 5,5               | 5,5       | 5,5      |
|                                                                                          | dry and wet concrete       | $\tau_{\rm Rk,seis,C1}$                   | [N/mm <sup>2</sup> ] | 7,1  | 6,2  | 5,7     | 5,5               | 5,5       | 5,5      |
| Temperature range I:                                                                     |                            | $\tau_{\rm Rk,seis,C2}$                   | [N/mm <sup>2</sup> ] | 2,4  | 2,2  | No Perf | ormance I         | Determine | d (NPD   |
| 40°C/24°C                                                                                |                            | τ <sub>Rk,cr</sub>                        | [N/mm <sup>2</sup> ] | 7,5  | 6,0  | 5,0     | 4,5               | 4,0       | 4,0      |
|                                                                                          | flooded bore hole          | τ <sub>Rk,seis,C1</sub>                   | [N/mm <sup>2</sup> ] | 7,1  | 5,8  | 4,8     | 4,5               | 4.0       | 4,0      |
|                                                                                          |                            | τ <sub>Rk,seis,C2</sub>                   | [N/mm <sup>2</sup> ] | 2,4  | 2,1  |         |                   | Determine |          |
|                                                                                          |                            | τ <sub>Rk,cr</sub>                        | [N/mm <sup>2</sup> ] | 4,5  | 4,0  | 3,5     | 3,5               | 3,5       | 3,5      |
|                                                                                          | dry and wet concrete       | TRk,seis,C1                               | [N/mm <sup>2</sup> ] | 4,3  | 3,8  | 3,4     | 3,5               | 3,5       | 3,5      |
|                                                                                          | ary and wer concrete       |                                           | [N/mm <sup>2</sup> ] | 1,4  | 1,4  | - / -   | -                 | Determine |          |
| Temperature range II:<br>60°C/43°C                                                       |                            | τ <sub>Rk,seis,C2</sub>                   | [N/mm <sup>2</sup> ] | 4,5  | 4,0  | 3,5     | 3,5               | 3,5       | 3,5      |
|                                                                                          | flooded bore hole          | τ <sub>Rk,cr</sub>                        | [N/mm <sup>2</sup> ] | 4,3  |      | 3,5     | 3,5               | 3,5       | 3,5      |
|                                                                                          | housed bore hole           | τ <sub>Rk,seis,C1</sub>                   |                      |      | 3,8  |         | -                 | Determine |          |
|                                                                                          |                            | $\tau_{\rm Rk,seis,C2}$                   | [N/mm <sup>2</sup> ] | 1,4  | 1,4  |         |                   |           | <u> </u> |
|                                                                                          |                            | $	au_{Rk,cr}$                             | [N/mm <sup>2</sup> ] | 4,0  | 3,5  | 3,0     | 3,0               | 3,0       | 3,0      |
|                                                                                          | dry and wet concrete       | τ <sub>Rk,seis,C1</sub>                   | [N/mm <sup>2</sup> ] | 3,9  | 3,4  | 3,0     | 3,0               | 3,0       | 3,0      |
| Temperature range III:<br>72°C/43°C                                                      |                            | $\tau_{\rm Rk,seis,C2}$                   | [N/mm <sup>2</sup> ] | 1,3  | 1,2  |         |                   | Determine | <u> </u> |
| 72-0/43-0                                                                                |                            | $\tau_{\rm Rk,cr}$                        | [N/mm <sup>2</sup> ] | 4,0  | 3,5  | 3,0     | 3,0               | 3,0       | 3,0      |
|                                                                                          | flooded bore hole          | $\tau_{\rm Rk,seis,C1}$                   | [N/mm <sup>2</sup> ] | 3,9  | 3,4  | 3,0     | 3,0               | 3,0       | 3,0      |
|                                                                                          |                            | $\tau_{\text{Rk,seis,C2}}$                | [N/mm <sup>2</sup> ] | 1,3  | 1,2  |         |                   | Determine | d (NPD   |
| ncreasing factors for conci                                                              |                            | C30/37                                    |                      |      |      | ,       | 04                |           |          |
| only static or quasi-static a                                                            | actions)                   | C40/50                                    |                      |      |      | 1,      | 08                |           |          |
| Ψc                                                                                       |                            | C50/60                                    |                      |      |      | 1,      | 10                |           |          |
| Factor according to<br>CEN/TS 1992-4-5 Section                                           | 6.2.2.3                    | k <sub>8</sub>                            | [-]                  |      |      | 7       | ,2                |           |          |
| Concrete cone failure                                                                    |                            |                                           |                      |      |      |         |                   |           |          |
| Factor according to<br>CEN/TS 1992-4-5 Section                                           | 6.2.3.1                    | k <sub>cr</sub>                           | [-]                  |      |      | 7       | ,2                |           |          |
| Edge distance                                                                            |                            | C <sub>cr,N</sub>                         | [mm]                 |      |      | 1,5     | i h <sub>ef</sub> |           |          |
| Axial distance                                                                           |                            | S <sub>cr,N</sub>                         | [mm]                 |      |      | 3,0     | ) h <sub>ef</sub> |           |          |
| Installation safety factor (dr                                                           | y and wet concrete)        | γinst                                     |                      | 1    | ,2   |         |                   | ,4        |          |
| Installation safety factor (flo                                                          | - ,                        | γinst                                     |                      |      |      | 1       | ,4                |           |          |
|                                                                                          |                            | 1.00                                      |                      |      |      |         | , ·               |           |          |

#### WPER500 Walraven Injection System for concrete

#### Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)



## Table C9: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

|                                                                           |                                        |              | M 8      | M 10     | M 12     | M 16                   | M 20                                   | M24        | M 27       | М 3    |
|---------------------------------------------------------------------------|----------------------------------------|--------------|----------|----------|----------|------------------------|----------------------------------------|------------|------------|--------|
| Steel failure without lever arm                                           |                                        |              |          |          |          |                        |                                        |            |            |        |
|                                                                           | $V_{Rk,s}$                             | [kN]         | 7        | 12       | 17       | 31                     | 49                                     | 71         | 92         | 112    |
| Characteristic shear resistance,<br>Steel, property class 4.6             | V <sub>Rk,s,seis,C1</sub>              | [kN]         | No Perf  | ormance  | 14       | 27                     | 42                                     | 56         | 72         | 88     |
|                                                                           | $V_{Rk,s,seis,C2}$                     | [kN]         | Determin | ed (NPD) | 13       | 25                     | No Per                                 | formance l | Determined | (NPD)  |
|                                                                           | V <sub>Rk,s</sub>                      | [kN]         | 9        | 15       | 21       | 39                     | 61                                     | 88         | 115        | 140    |
| Characteristic shear resistance,<br>Steel, property class 5.8             | $V_{Rk,s,seis,C1}$                     | [kN]         |          | ormance  | 18       | 34                     | 53                                     | 70         | 91         | 111    |
|                                                                           | V <sub>Rk,s,seis,C2</sub>              | [kN]         | Determin | ed (NPD) | 17       | 31                     | No Per                                 | formance I | Determined | d (NPD |
| Characteristic cheer, registered                                          | V <sub>Rk,s</sub>                      | [kN]         | 15       | 23       | 34       | 63                     | 98                                     | 141        | 184        | 224    |
| Characteristic shear resistance,<br>Steel, property class 8.8             | $V_{\text{Rk},s,seis,C1}$              | [kN]         |          | ormance  | 30       | 55                     | 85                                     | 111        | 145        | 177    |
|                                                                           | $V_{\text{Rk},s,seis,C2}$              | [kN]         | Determin | ed (NPD) | 27       | 50                     | No Per                                 | formance I | Determined | d (NPD |
| Characteristic shear resistance,                                          | V <sub>Rk,s</sub>                      | [kN]         | 13       | 20       | 30       | 55                     | 86                                     | 124        | 115        | 14(    |
| Stainless steel A4 and HCR, property class 50 (>M24) and 70 ( $\leq$ M24) | V <sub>Rk,s,seis,C1</sub>              | [kN]         |          | ormance  | 26       | 48                     | 75                                     | 98         | 91         | 111    |
|                                                                           | V <sub>Rk,s,seis,C2</sub>              | [kN]         | Determin | ed (NPD) | 24       | 44                     | No Per                                 | formance I | Determined | d (NPD |
| Ductility factor according to<br>CEN/TS 1992-4-5 Section 6.3.2.1          | k <sub>2</sub>                         |              |          |          |          | 0                      | ,8                                     |            |            |        |
| Steel failure with lever arm                                              | •                                      |              |          |          |          |                        |                                        |            |            |        |
|                                                                           | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm]         | 15       | 30       | 52       | 133                    | 260                                    | 449        | 666        | 900    |
| Characteristic bending moment,<br>Steel, property class 4.6               | M <sup>0</sup> <sub>Rk,s,seis,C1</sub> | [Nm]         |          |          | No Por   | formance I             | Determiner                             |            |            |        |
|                                                                           | M <sup>0</sup> <sub>Rk,s,seis,C2</sub> | [Nm]         |          |          |          |                        | Jetenninet                             |            |            |        |
|                                                                           | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm]         | 19       | 37       | 65       | 166                    | 324                                    | 560        | 833        | 112    |
| Characteristic bending moment,<br>Steel, property class 5.8               | M <sup>0</sup> <sub>Rk,s,seis,C1</sub> | [Nm]         |          |          | No Per   | formance I             | Determined                             |            |            |        |
|                                                                           | M <sup>0</sup> <sub>Rk,s,seis,C2</sub> | [Nm]         |          |          | 110 1 01 |                        |                                        | . (        |            |        |
| Characteristic handing memort                                             | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm]         | 30       | 60       | 105      | 266                    | 519                                    | 896        | 1333       | 179    |
| Characteristic bending moment,<br>Steel, property class 8.8               | M <sup>0</sup> <sub>Rk,s,seis,C1</sub> | [Nm]         |          |          | No Per   | formance l             | Determined                             | (NPD)      |            |        |
|                                                                           | M <sup>0</sup> <sub>Rk,s,seis,C2</sub> | [Nm]         |          |          |          |                        |                                        |            |            |        |
| Characteristic bending moment,                                            | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm]         | 26       | 52       | 92       | 232                    | 454                                    | 784        | 832        | 112    |
| Stainless steel A4 and HCR, property class 50 (>M24) and 70 ( $\leq$ M24) | M <sup>0</sup> <sub>Rk,s,seis,C1</sub> | [Nm]         |          |          | No Per   | formance I             | Determined                             | d (NPD)    |            |        |
|                                                                           | M <sup>0</sup> <sub>Rk,s,seis,C2</sub> | [Nm]         |          |          |          |                        |                                        | . ,        |            |        |
| Concrete pry-out failure                                                  |                                        |              |          |          |          |                        |                                        |            |            |        |
| Factor in equation (27) of                                                | k <sub>3</sub>                         |              |          |          |          | 2                      | ,0                                     |            |            |        |
| CEN/TS 1992-4-5 Section 6.3.3                                             | γinst                                  |              |          |          |          | 1                      | ,0                                     |            |            |        |
| nstallation safety factor                                                 |                                        |              |          |          |          |                        |                                        |            |            |        |
|                                                                           |                                        |              |          |          |          | l <sub>f</sub> = min(h | l <sub>ef</sub> ; 8 d <sub>nom</sub> ) |            |            |        |
| nstallation safety factor                                                 | lf                                     | [mm]         |          |          |          |                        |                                        |            |            |        |
| nstallation safety factor<br>Concrete edge failure <sup>3)</sup>          | l <sub>f</sub><br>d <sub>nom</sub>     | [mm]<br>[mm] | 8        | 10       | 12       | 16                     | 20                                     | 24         | 27         | 30     |

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 and TR 045)



|                                            |           | acteristic value<br>cracked concre                          |                        |                      |     |         |                      |                                 |                                   |                                       | ls in                |       |      |
|--------------------------------------------|-----------|-------------------------------------------------------------|------------------------|----------------------|-----|---------|----------------------|---------------------------------|-----------------------------------|---------------------------------------|----------------------|-------|------|
| Anchor size reinforc                       | ing bar   |                                                             |                        |                      | Ø 8 | Ø 10    | Ø 12                 | Ø 14                            | Ø 16                              | Ø 20                                  | Ø 25                 | Ø 28  | Ø 32 |
| Steel failure                              |           |                                                             |                        |                      |     |         |                      |                                 |                                   |                                       |                      |       |      |
| Characteristic tension                     | resista   | nce                                                         | N <sub>Rk,s</sub>      | [kN]                 |     |         |                      |                                 | $A_{s} \boldsymbol{\cdot} f_{uk}$ |                                       |                      |       |      |
| Combined pull-out a                        | nd con    | crete failure                                               |                        |                      |     |         |                      |                                 |                                   |                                       |                      |       |      |
| Characteristic bond re                     | esistanc  | e in non-cracked concre                                     | ete C20/25             | 5                    |     |         |                      |                                 |                                   |                                       |                      |       |      |
| Temperature range I:                       |           | dry and wet concrete                                        | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ] | 14  | 14      | 13                   | 13                              | 12                                | 12                                    | 11                   | 11    | 11   |
| 40°C/24°C                                  |           | flooded bore hole                                           | $\tau_{\rm Rk,ucr}$    | [N/mm <sup>2</sup> ] | 14  | 13      | 11                   | 10                              | 9,5                               | 8,5                                   | 7,5                  | 7,0   | 6,0  |
| Temperature range II:                      | :         | dry and wet concrete                                        | $\tau_{\rm Rk,ucr}$    | [N/mm²]              | 8,5 | 8,5     | 8,0                  | 8,0                             | 7,5                               | 7,0                                   | 7,0                  | 6,5   | 6,5  |
| 60°C/43°C                                  |           | flooded bore hole                                           | $	au_{Rk,ucr}$         | [N/mm²]              | 8,5 | 8,5     | 8,0                  | 8,0                             | 7,5                               | 7,0                                   | 6,0                  | 5,5   | 5,0  |
| Temperature range III                      | :         | dry and wet concrete                                        | $	au_{Rk,ucr}$         | [N/mm²]              | 7,5 | 7,5     | 7,5                  | 7,0                             | 7,0                               | 6,5                                   | 6,0                  | 6,0   | 6,0  |
| 72°C/43°C                                  |           | flooded bore hole                                           | $\tau_{\text{Rk,ucr}}$ | [N/mm²]              | 7,5 | 7,5     | 7,5                  | 7,0                             | 7,0                               | 6,0                                   | 5,5                  | 5,0   | 4,5  |
|                                            |           |                                                             | C30/37                 |                      |     |         |                      |                                 | 1,04                              |                                       |                      |       |      |
| Increasing factors for $\psi_c$            | concret   | e                                                           | C40/50                 |                      |     |         |                      |                                 | 1,08                              |                                       |                      |       |      |
|                                            |           |                                                             | C50/60                 |                      |     |         |                      |                                 | 1,10                              |                                       |                      |       |      |
| Factor according to<br>CEN/TS 1992-4-5 Sec | ction 6.2 | 2.2.3                                                       | k <sub>8</sub>         | [-]                  |     |         |                      |                                 | 10,1                              |                                       |                      |       |      |
| Concrete cone failur                       | e         |                                                             |                        |                      |     |         |                      |                                 |                                   |                                       |                      |       |      |
| Factor according to<br>CEN/TS 1992-4-5 Sec | ction 6.2 | 2.3.1                                                       | k <sub>ucr</sub>       | [-]                  |     |         |                      |                                 | 10,1                              |                                       |                      |       |      |
| Edge distance                              |           |                                                             | C <sub>cr,N</sub>      | [mm]                 |     |         |                      |                                 | 1,5 h <sub>ef</sub>               |                                       |                      |       |      |
| Axial distance                             |           |                                                             | S <sub>cr,N</sub>      | [mm]                 |     |         |                      |                                 | 3,0 h <sub>ef</sub>               |                                       |                      |       |      |
| Splitting failure                          |           |                                                             |                        | _                    |     |         |                      |                                 |                                   |                                       |                      |       |      |
| Edge distance                              |           |                                                             | C <sub>cr,sp</sub>     | [mm]                 |     |         | 1,0 · h <sub>e</sub> | <sub>ef</sub> ≤2·h <sub>a</sub> | ef (2,5                           | $\left(\frac{h}{h_{ef}}\right) \le 2$ | ,4 · h <sub>ef</sub> |       |      |
| Axial distance                             |           |                                                             | S <sub>cr,sp</sub>     | [mm]                 |     |         |                      |                                 | $2 c_{\text{cr,sp}}$              |                                       |                      |       |      |
| Installation safety fact                   | or (dry a | and wet concrete)                                           | γinst                  |                      |     |         | 1,2                  |                                 |                                   |                                       | 1                    | ,4    |      |
| Installation safety fact                   | or (floo  | ded bore hole)                                              | γinst                  |                      |     |         |                      |                                 | 1,4                               |                                       |                      |       |      |
|                                            |           |                                                             |                        |                      |     |         |                      |                                 |                                   |                                       |                      |       |      |
| Performances                               | ies of r  | n Injection Syste<br>esistance for rebar ur<br>N/TS 1992-4) |                        |                      |     | cracked | concre               | te                              |                                   |                                       | Anne                 | x C 1 | 0    |



|                                                | aracteristic valu<br>crete (Design a |                               |                      |      |      |      |                                 | ds in ( | cracke | ed   |
|------------------------------------------------|--------------------------------------|-------------------------------|----------------------|------|------|------|---------------------------------|---------|--------|------|
| Anchor size reinforcing                        | j bar                                |                               |                      | Ø 12 | Ø 14 | Ø 16 | Ø 20                            | Ø 25    | Ø 28   | Ø 32 |
| Steel failure                                  |                                      |                               |                      |      |      |      |                                 |         |        |      |
| Characteristic tension res                     | sistance                             | $N_{Rk,s} = N_{Rk,s,scis,C1}$ | [kN]                 |      |      |      | $A_{s}\boldsymbol{\cdot}f_{uk}$ |         |        |      |
| Combined pull-out and                          | concrete failure                     | •                             | •                    |      |      |      |                                 |         |        |      |
| Characteristic bond resis                      | tance in cracked concre              | te C20/25                     |                      |      |      |      |                                 |         |        |      |
|                                                |                                      | $	au_{\mathrm{Rk,cr}}$        | [N/mm <sup>2</sup> ] | 7,5  | 7,0  | 6,5  | 6,0                             | 5,5     | 5,5    | 5,5  |
| Temperature range I:                           | dry and wet concrete                 | $\tau_{\rm Rk,seis,C1}$       | [N/mm²]              | 6,9  | 6,4  | 6,2  | 5,7                             | 5,5     | 5,5    | 5,5  |
| 40°C/24°C                                      |                                      | $\tau_{\rm Rk,cr}$            | [N/mm <sup>2</sup> ] | 7,5  | 6,5  | 6,0  | 5,0                             | 4,5     | 4,0    | 4,0  |
|                                                | flooded bore hole                    | $\tau_{\rm Rk,seis,C1}$       | [N/mm²]              | 6,9  | 6,0  | 5,7  | 4,8                             | 4,5     | 4,0    | 4,0  |
|                                                |                                      | $\tau_{\rm Rk,cr}$            | [N/mm²]              | 4,5  | 4,0  | 4,0  | 3,5                             | 3,5     | 3,5    | 3,5  |
| Temperature range II:                          | dry and wet concrete                 | $\tau_{\rm Rk,seis,C1}$       | [N/mm²]              | 4,1  | 3,7  | 3,8  | 3,3                             | 3,5     | 3,5    | 3,5  |
| 60°C/43°C                                      |                                      | $\tau_{Rk,cr}$                | [N/mm <sup>2</sup> ] | 4,5  | 4,0  | 4,0  | 3,5                             | 3,5     | 3,5    | 3,0  |
|                                                | flooded bore hole                    | τ <sub>Rk,seis,C1</sub>       | [N/mm <sup>2</sup> ] | 4,1  | 3,7  | 3,8  | 3,3                             | 3,5     | 3,5    | 3,0  |
|                                                |                                      | τ <sub>Rk,cr</sub>            | [N/mm <sup>2</sup> ] | 4,0  | 3,5  | 3,5  | 3,0                             | 3,0     | 3,0    | 3,0  |
| Temperature range III:                         | dry and wet concrete                 | τ <sub>Rk,seis,C1</sub>       | [N/mm <sup>2</sup> ] | 3,7  | 3,2  | 3,3  | 2,9                             | 3,0     | 3,0    | 3,0  |
| 72°C/43°C                                      |                                      | $\tau_{\rm Rk,cr}$            | [N/mm <sup>2</sup> ] | 4,0  | 3,5  | 3,5  | 3,0                             | 3,0     | 3,0    | 3,0  |
|                                                | flooded bore hole                    | $\tau_{\rm Rk,seis,C1}$       | [N/mm <sup>2</sup> ] | 3,7  | 3,2  | 3,3  | 2,9                             | 3,0     | 3,0    | 3,0  |
| Increasing factors for cor                     |                                      | C30/37                        |                      |      |      |      | 1,04                            |         |        |      |
| (only static or quasi-static                   |                                      | C40/50                        |                      |      |      |      | 1,08                            |         |        |      |
| $\psi_{c}$                                     |                                      | C50/60                        |                      |      |      |      | 1,10                            |         |        |      |
| Factor according to<br>CEN/TS 1992-4-5 Section | n 6.2.2.3                            | k <sub>8</sub>                | [-]                  |      |      |      | 7,2                             |         |        |      |
| Concrete cone failure                          |                                      |                               |                      |      |      |      |                                 |         |        |      |
| Factor according to<br>CEN/TS 1992-4-5 Sectio  | n 6.2.3.1                            | k <sub>cr</sub>               | [-]                  |      |      |      | 7,2                             |         |        |      |
| Edge distance                                  |                                      | C <sub>cr,N</sub>             | [mm]                 |      |      |      | 1,5 $h_{ef}$                    |         |        |      |
| Axial distance                                 |                                      | S <sub>cr,N</sub>             | [mm]                 |      |      |      | 3,0 h <sub>ef</sub>             |         |        |      |
| Installation safety factor                     | (dry and wet concrete)               | γinst                         |                      |      | 1,2  |      |                                 | 1       | ,4     |      |
| Installation safety factor                     | (flooded bore hole)                  | γinst                         |                      |      |      |      | 1,4                             |         |        |      |
|                                                |                                      |                               |                      |      |      |      |                                 |         |        |      |

#### WPER500 Walraven Injection System for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to CEN/TS 1992-4 and TR 045)

Г



| Table C12: Characteristic value<br>and non-cracked co            |                                        |      |                               |                |       |           |                         |                       |                 |             | )    |
|------------------------------------------------------------------|----------------------------------------|------|-------------------------------|----------------|-------|-----------|-------------------------|-----------------------|-----------------|-------------|------|
| Anchor size reinforcing bar                                      |                                        |      | Ø 8                           | Ø 10           | Ø 12  | Ø 14      | Ø 16                    | Ø <b>20</b>           | Ø <b>25</b>     | Ø <b>28</b> | Ø 32 |
| Steel failure without lever arm                                  |                                        |      |                               |                |       |           |                         |                       |                 |             |      |
|                                                                  | $V_{Rk,s}$                             | [kN] |                               |                |       | 0,9       | 50 • A <sub>s</sub> •   | f <sub>uk</sub>       |                 |             |      |
| Characteristic shear resistance                                  | V <sup>0</sup> <sub>Rk,s,seis,C1</sub> | [kN] | N<br>Perfori<br>Deteri<br>(NF | mance<br>mined |       |           | 0,4                     | 14 • A <sub>s</sub> • | f <sub>uk</sub> |             |      |
| Ductility factor according to<br>CEN/TS 1992-4-5 Section 6.3.2.1 | k <sub>2</sub>                         |      |                               |                |       |           | 0,8                     |                       |                 |             |      |
| Steel failure with lever arm                                     |                                        |      |                               |                |       |           |                         |                       |                 |             |      |
| Characteristic bending moment                                    | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm] |                               |                |       | 1.:       | 2 · W <sub>el</sub> ·   | f <sub>uk</sub>       |                 |             |      |
| Characteristic bending moment                                    | $M^0_{\rm Rk,s,seis,C1}$               | [Nm] |                               |                | No Pe | erformar  | ice Dete                | rmined (              | (NPD)           |             |      |
| Concrete pry-out failure                                         |                                        |      |                               |                |       |           |                         |                       |                 |             |      |
| Factor in equation (27) of CEN/TS 1992-4-5<br>Section 6.3.3      | k <sub>3</sub>                         |      |                               |                |       |           | 2,0                     |                       |                 |             |      |
| Installation safety factor                                       | γinst                                  |      |                               |                |       |           | 1,0                     |                       |                 |             |      |
| Concrete edge failure                                            |                                        |      |                               |                |       |           |                         |                       |                 |             |      |
| Effective length of anchor                                       | lf                                     | [mm] |                               |                |       | $I_f = m$ | nin(h <sub>ef</sub> ; 8 | d <sub>nom</sub> )    |                 |             |      |
| Outside diameter of anchor                                       | d <sub>nom</sub>                       | [mm] | 8                             | 10             | 12    | 14        | 16                      | 20                    | 25              | 28          | 32   |
| Installation safety factor                                       | γinst                                  |      |                               |                |       |           | 1,0                     |                       |                 |             |      |

#### WPER500 Walraven Injection System for concrete

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 and TR 045)



| Anchor size thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ded rod                                                                                                                                                                                                                                         |                                                                                                                 | M 8                                                                                         | M 10                                        | M 12                                                | M 16                                         | M 20          | M24                 | M 27        | M 30                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------------------------------|---------------|---------------------|-------------|-----------------------------|
| Non-cracked conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rete C20/25                                                                                                                                                                                                                                     | under static and o                                                                                              | quasi-static                                                                                | c action                                    |                                                     |                                              |               |                     |             |                             |
| Temperature range I:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\delta_{N0}$ -factor                                                                                                                                                                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                       | 0,011                                                                                       | 0,013                                       | 0,015                                               | 0,020                                        | 0,024         | 0,029               | 0,032       | 0,03                        |
| 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                      | [mm/(N/mm <sup>2</sup> )]                                                                                       | 0,044                                                                                       | 0,052                                       | 0,061                                               | 0,079                                        | 0,096         | 0,114               | 0,127       | 0,14                        |
| Temperature range II:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\delta_{N0}$ -factor                                                                                                                                                                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                       | 0,013                                                                                       | 0,015                                       | 0,018                                               | 0,023                                        | 0,028         | 0,033               | 0,037       | 0,04                        |
| 60°C/43°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                      | [mm/(N/mm <sup>2</sup> )]                                                                                       | 0,050                                                                                       | 0,060                                       | 0,070                                               | 0,091                                        | 0,111         | 0,131               | 0,146       | 0,16                        |
| Temperature range III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\delta_{N0}$ -factor                                                                                                                                                                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                       | 0,013                                                                                       | 0,015                                       | 0,018                                               | 0,023                                        | 0,028         | 0,033               | 0,037       | 0,04                        |
| 72°C/43°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_{N\infty}\text{-}factor$                                                                                                                                                                                                                | [mm/(N/mm <sup>2</sup> )]                                                                                       | 0,050                                                                                       | 0,060                                       | 0,070                                               | 0,091                                        | 0,111         | 0,131               | 0,146       | 0,16                        |
| Cracked concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C20/25 und                                                                                                                                                                                                                                      | er static, quasi-sta                                                                                            | atic and sei                                                                                | ismic C                                     | 1 action                                            |                                              |               |                     |             |                             |
| Temperature range I:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\delta_{N0}$ -factor                                                                                                                                                                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             |                                             | 0,032                                               | 0,037                                        | 0,042         | 0,048               | 0,053       | 0,05                        |
| 40°C/24°Cັ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                      | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             |                                             | 0,21                                                | 0,21                                         | 0,21          | 0,21                | 0,21        | 0,21                        |
| Temperature range II:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\delta_{N0}$ -factor                                                                                                                                                                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             | ormance<br>mined                            | 0,037                                               | 0,043                                        | 0,049         | 0,055               | 0,061       | 0,06                        |
| 60°C/43°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                      | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             | PD)                                         | 0,24                                                | 0,24                                         | 0,24          | 0,24                | 0,24        | 0,24                        |
| Temperature range III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\delta_{N0}$ -factor                                                                                                                                                                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             |                                             | 0,037                                               | 0,043                                        | 0,049         | 0,055               | 0,061       | 0,06                        |
| 72°C/43°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_{N\infty}\text{-}factor$                                                                                                                                                                                                                | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             |                                             | 0,24                                                | 0,24                                         | 0,24          | 0,24                | 0,24        | 0,24                        |
| Cracked concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C20/25 und                                                                                                                                                                                                                                      | er seismic C2 acti                                                                                              | on                                                                                          |                                             |                                                     |                                              |               |                     |             |                             |
| Temperature range I:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\delta_{N,seis(DLS)}$                                                                                                                                                                                                                          | [mm/(N/mm²)]                                                                                                    |                                                                                             |                                             | 0,03                                                | 0,05                                         |               |                     |             |                             |
| 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_{N,seis(ULS)}$                                                                                                                                                                                                                          | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             |                                             | 0,06                                                | 0,09                                         |               |                     |             |                             |
| Temperature range II:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\delta_{N,seis(DLS)}$                                                                                                                                                                                                                          | [mm/(N/mm²)]                                                                                                    |                                                                                             | ormance                                     | 0,03                                                | 0,05                                         |               |                     |             |                             |
| ່60°C/43°C ັ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\delta_{N,seis(ULS)}$                                                                                                                                                                                                                          | [mm/(N/mm²)]                                                                                                    | Deter<br>(NI                                                                                | mined<br>PD)                                | 0,06                                                | 0,09                                         | No Peri       | ormance I           | Jetermine   | a (NPL                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                 |                                                                                             |                                             |                                                     | ,                                            |               |                     |             |                             |
| Temperature range III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\delta_{N,seis(\text{DLS})}$                                                                                                                                                                                                                   | [mm/(N/mm²)]                                                                                                    | ```                                                                                         | ( )                                         | 0,03                                                | 0,05                                         |               |                     |             |                             |
| Temperature range III:<br>72°C/43°C<br><sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\delta_{N,seis(ULS)}$ e displacemento $\tau;$                                                                                                                                                                                                  | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             |                                             | 0,03<br>0,06                                        | 0,05                                         |               |                     |             |                             |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{l} \delta_{\text{N,seis(ULS)}} \\ \text{e displacement} \\ \cdot \ \tau; \\ \cdot \ \tau; \end{array} $                                                                                                                         | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             | ·<br>                                       | 0,06                                                | 0,09                                         |               |                     |             |                             |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | δ <sub>N,seis(ULS)</sub><br>e displacemen<br>· τ;<br>· τ;<br>splaceme                                                                                                                                                                           | [mm/(N/mm <sup>2</sup> )]                                                                                       |                                                                                             | ·<br>                                       | 0,06                                                | 0,09                                         | M 20          | M24                 | M 27        | M 30                        |
| $72^{\circ}C/43^{\circ}C$<br><sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br>Anchor size thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\delta_{N,seis(ULS)}$ e displacement<br>· $\tau$ ;<br>· $\tau$ ;<br>splacement<br>ded rod                                                                                                                                                      | [mm/(N/mm²)]<br>nt                                                                                              | ur load <sup>1)</sup> (1                                                                    | thread                                      | 0,06<br>ed rod<br>M 12                              | 0,09<br>)<br>M 16                            | 0             |                     | M 27        | M 30                        |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br>Anchor size thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\delta_{N,seis(ULS)}$ e displacement<br>· $\tau$ ;<br>· $\tau$ ;<br>splacement<br>ded rod                                                                                                                                                      | [mm/(N/mm²)]<br>nt                                                                                              | ur load <sup>1)</sup> (1                                                                    | thread                                      | 0,06<br>ed rod<br>M 12                              | 0,09<br>)<br>M 16                            | 0             |                     | <b>M 27</b> |                             |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br><b>Anchor size thread</b><br><b>Non-cracked and o</b><br>All temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $δ_{N,seis(ULS)}$<br>e displacement<br>· τ;<br>· τ;<br>splacement<br>ded rod<br>cracked cor                                                                                                                                                     | [mm/(N/mm <sup>2</sup> )]<br>nt<br>ents under shea                                                              | r load <sup>1)</sup> (1<br>M 8<br>er static, qu                                             | thread<br>M 10<br>Jasi-sta                  | 0,06<br>ed rod<br>M 12<br>tic and s                 | 0,09<br>)<br>M 16<br>seismic                 | C1 act        | ion                 |             | 0,03                        |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br><b>Anchor size thread</b><br><b>Non-cracked and o</b><br>All temperature<br>ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \delta_{N,seis(ULS)} \\ e \ displacement \\ \cdot \ \tau; \\ \cdot \ \tau; \\ splacement \\ ded \ rod \\ cracked \ cor \\ \hline \delta_{Vo} \mbox{-}factor \\ \hline \delta_{V\infty} \mbox{-}factor \\ \end{array}$         | [mm/(N/mm²)]<br>nt<br>ents under shea<br>ncrete C20/25 unde<br>[mm/(kN)]<br>[mm/(kN)]                           | Ir load <sup>1)</sup> (1<br>M 8<br>Pr static, qu<br>0,06<br>0,09                            | thread<br>M 10<br>Jasi-stat                 | 0,06<br>ed rod<br>M 12<br>tic and s<br>0,05         | 0,09<br>)<br>M 16<br>seismic<br>0,04         | <b>C1 act</b> | i <b>on</b><br>0,03 | 0,03        | 0,03                        |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br><b>Anchor size thread</b><br><b>Non-cracked and d</b><br>All temperature<br>ranges<br><b>Cracked concrete</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \delta_{N,seis(ULS)} \\ e \ displacemen \\ \cdot \ \tau; \\ \cdot \ \tau; \\ splaceme \\ ded \ rod \\ cracked \ cor \\ \hline \delta_{Vo} \ factor \\ \hline \delta_{V\infty} \ factor \\ \hline C20/25 \ und \\ \end{array}$ | Imm/(N/mm²)]<br>nt<br>ents under shea<br>ncrete C20/25 under<br>[mm/(kN)]<br>[mm/(kN)]<br>ler seismic C2 action | er static, qu<br>0,06<br>0,09<br>0n                                                         | thread<br>M 10<br>Jasi-sta<br>0,06<br>0,08  | 0,06<br>ed rod<br>M 12<br>tic and 1<br>0,05<br>0,08 | 0,09<br>)<br>M 16<br>seismic<br>0,04<br>0,06 | 0,04          | i <b>on</b><br>0,03 | 0,03        | <b>M 30</b><br>0,03<br>0,05 |
| $72^{\circ}C/43^{\circ}C$<br><sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br>Anchor size thread<br>Non-cracked and d<br>All temperature<br>ranges<br><b>Cracked concrete</b><br>All temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \delta_{N,seis(ULS)} \\ e \ displacemen \\ \cdot \ \tau; \\ splacemen \\ ded \ rod \\ cracked \ cor \\ \delta_{V0} \mbox{-}factor \\ \delta_{V\infty} \mbox{-}factor \\ cracked \ cor \\ \delta_{V,seis(DLS)} \\ \end{array}$ | ents under shea                                                                                                 | nr Ioad <sup>1)</sup> (1<br>M 8<br>er static, qu<br>0,06<br>0,09<br>on<br>No Perfi<br>Deter | thread<br>M 10<br>Jasi-stat<br>0,06<br>0,08 | 0,06<br>ed rod<br>M 12<br>tic and s<br>0,05<br>0,08 | 0,09<br>)<br>M 16<br>seismic<br>0,04<br>0,06 | 0,04<br>0,06  | i <b>on</b><br>0,03 | 0,03        | 0,03                        |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br><b>Anchor size thread</b><br><b>Non-cracked and d</b><br>All temperature<br>ranges<br><b>Cracked concrete</b><br>All temperature<br>ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \delta_{N,seis(ULS)} \\ e \ displacemen \\ \cdot \ \tau; \\ splacemen \\ ded \ rod \\ cracked \ cor \\ \delta_{V0} \mbox{-} factor \\ \hline \delta_{V,seis(DLS)} \\ \delta_{V,seis(ULS)} \\ \end{array}$                     | ents under shea                                                                                                 | nr Ioad <sup>1)</sup> (1<br>M 8<br>er static, qu<br>0,06<br>0,09<br>on<br>No Perfi<br>Deter | thread<br>M 10<br>Jasi-sta<br>0,06<br>0,08  | 0,06<br>ed rod<br>M 12<br>tic and 1<br>0,05<br>0,08 | 0,09<br>)<br>M 16<br>seismic<br>0,04<br>0,06 | 0,04<br>0,06  | ion<br>0,03<br>0,05 | 0,03        | 0,03                        |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \delta_{N,seis(ULS)} \\ e \ displacemen \\ \cdot \ \tau; \\ \cdot \ \tau; \\ \end{array}$                                                                                                                                     | ents under shea                                                                                                 | nr Ioad <sup>1)</sup> (1<br>M 8<br>er static, qu<br>0,06<br>0,09<br>on<br>No Perfi<br>Deter | thread<br>M 10<br>Jasi-stat<br>0,06<br>0,08 | 0,06<br>ed rod<br>M 12<br>tic and s<br>0,05<br>0,08 | 0,09<br>)<br>M 16<br>seismic<br>0,04<br>0,06 | 0,04<br>0,06  | ion<br>0,03<br>0,05 | 0,03        | 0,03                        |
| <sup>1)</sup> Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C14: Di</b><br><b>Anchor size thread</b><br><b>Non-cracked and d</b><br><b>Anchor size thread</b><br><b>Anchor size thread </b> | $\begin{array}{c} \delta_{N,seis(ULS)} \\ e \ displacemen \\ \cdot \ \tau; \\ \cdot \ \tau; \\ \end{array}$                                                                                                                                     | ents under shea                                                                                                 | er static, qu<br>0,06<br>0,09<br>0n<br>No Perfi<br>Deter<br>(Ni                             | thread<br>M 10<br>Jasi-stat<br>0,06<br>0,08 | 0,06<br>ed rod<br>M 12<br>tic and s<br>0,05<br>0,08 | 0,09<br>)<br>M 16<br>seismic<br>0,04<br>0,06 | 0,04<br>0,06  | ion<br>0,03<br>0,05 | 0,03        | 0,03                        |



| Anchor size reinfo                                                                                                                                  | orcing bar                                                                                                                           |                                            | Ø 8                     | Ø 10                         | Ø 12                     | Ø 14                | Ø 16                | Ø 20                | Ø 25                | Ø 28                | Ø 32                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|------------------------------|--------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|
| Non-cracked cond                                                                                                                                    | crete C20/                                                                                                                           | 25 under static                            | and qua                 | asi-stati                    | ic actior                | ้า                  |                     |                     |                     |                     |                      |
| Temperature range I:                                                                                                                                | $\delta_{N0}$ -factor                                                                                                                | [mm/(N/mm <sup>2</sup> )]                  | 0,011                   | 0,013                        | 0,015                    | 0,018               | 0,020               | 0,024               | 0,030               | 0,033               | 0,03                 |
| 40°C/24°C                                                                                                                                           | $\delta_{N_{\infty}}$ -factor                                                                                                        | [mm/(N/mm <sup>2</sup> )]                  | 0,044                   | 0,052                        | 0,061                    | 0,070               | 0,079               | 0,096               | 0,118               | 0,132               | 0,14                 |
| Temperature range II:                                                                                                                               | $\delta_{N0}$ -factor                                                                                                                | [mm/(N/mm²)]                               | 0,013                   | 0,015                        | 0,018                    | 0,020               | 0,023               | 0,028               | 0,034               | 0,038               | 0,04                 |
| 60°C/43°C                                                                                                                                           | $\delta_{N\infty}$ -factor                                                                                                           | [mm/(N/mm²)]                               | 0,050                   | 0,060                        | 0,070                    | 0,081               | 0,091               | 0,111               | 0,136               | 0,151               | 0,17                 |
| Temperature range III:                                                                                                                              | $\delta_{N0}$ -factor                                                                                                                | [mm/(N/mm <sup>2</sup> )]                  | 0,013                   | 0,015                        | 0,018                    | 0,020               | 0,023               | 0,028               | 0,034               | 0,038               | 0,04                 |
| 72°C/43°C                                                                                                                                           | $\delta_{N_{\infty}}$ -factor                                                                                                        | [mm/(N/mm²)]                               | 0,050                   | 0,060                        | 0,070                    | 0,081               | 0,091               | 0,111               | 0,136               | 0,151               | 0,17                 |
| Cracked concrete                                                                                                                                    | C20/25 u                                                                                                                             | nder static, qua                           | asi-statio              | c and se                     | eismic C                 | 1 actio             | n                   |                     |                     |                     |                      |
| Temperature range I:                                                                                                                                | $\delta_{N0}$ -factor                                                                                                                | [mm/(N/mm <sup>2</sup> )]                  |                         |                              | 0,032                    | 0,035               | 0,037               | 0,042               | 0,049               | 0,055               | 0,06                 |
| 40°C/24°Cັ                                                                                                                                          | $\delta_{N_{\infty}}$ -factor                                                                                                        | [mm/(N/mm²)]                               |                         | -                            | 0,21                     | 0,21                | 0,21                | 0,21                | 0,21                | 0,21                | 0,21                 |
| Temperature range II:                                                                                                                               | $\delta_{N0}$ -factor                                                                                                                | [mm/(N/mm <sup>2</sup> )]                  |                         |                              | 0,037                    | 0,040               | 0,043               | 0,049               | 0,056               | 0,063               | 0,07                 |
| 60°C/43°C                                                                                                                                           | $\delta_{N\infty}$ -factor                                                                                                           | [mm/(N/mm <sup>2</sup> )]                  |                         | -                            | 0,24                     | 0,24                | 0,24                | 0,24                | 0,24                | 0,24                | 0,24                 |
| Temperature range III:                                                                                                                              | $\delta_{N0}$ -factor                                                                                                                | [mm/(N/mm <sup>2</sup> )]                  |                         |                              | 0,037                    | 0,040               | 0,043               | 0,049               | 0,056               | 0,063               | 0,07                 |
| 72°C/43°C                                                                                                                                           | $\delta_{N_{\infty}}$ -factor                                                                                                        | [mm/(N/mm <sup>2</sup> )]                  | ]                       | -                            | 0,24                     | 0,24                | 0,24                | 0,24                | 0,24                | 0,24                | 0,24                 |
| $\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$                        | · τ;                                                                                                                                 | nent under s                               | hear lo                 | ad <sup>1)</sup> (r          | ebar)                    |                     |                     |                     | 1                   |                     |                      |
| $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor<br>Table C16: D                                                                                 | τ;<br>isplacen                                                                                                                       |                                            | hear lo<br>Ø 8          | oad <sup>1)</sup> (r<br>∅ 10 | ebar)<br>Ø 12            | Ø 14                | Ø 16                | Ø 20                | Ø 25                | Ø 28                | Ø 3:                 |
| $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor<br>Table C16: D<br>Anchor size reinfo                                                           | isplacen                                                                                                                             |                                            | Ø 8                     | Ø 10                         | Ø 12                     |                     | Ø 16                | Ø 20                | Ø 25                | Ø 28                | Ø3                   |
| $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor<br><b>Table C16: D</b><br>Anchor size reinfo<br>For concrete C20/<br>All temperature            | isplacen                                                                                                                             |                                            | Ø 8                     | Ø 10                         | Ø 12                     |                     | Ø <b>16</b><br>0,04 | Ø <b>20</b><br>0,04 | Ø <b>25</b><br>0,03 | Ø <b>28</b><br>0,03 | Ø <b>3</b> 2<br>0,03 |
| $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor<br><b>Table C16: D</b><br>Anchor size reinfor<br>For concrete C20/<br>All temperature<br>ranges | isplacen<br>prcing bar<br>25 under s<br>$\delta_{V0}$ -factor<br>$\delta_{V\infty}$ -factor                                          | static, quasi-st<br>[mm/(kN)]<br>[mm/(kN)] | Ø 8<br>atic and         | Ø 10<br>seismi               | Ø 12<br>c C1 act         | ion                 |                     |                     |                     |                     |                      |
| $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor<br>Table C16: D<br>Anchor size reinfo<br>For concrete C20/                                      | $\tau;$<br>isplacen<br>prcing bar<br>25 under s<br>$\delta_{Vo}$ -factor<br>$\delta_{V\infty}$ -factor<br>ie displacen<br>$\cdot$ V; | static, quasi-st<br>[mm/(kN)]<br>[mm/(kN)] | Ø 8<br>atic and<br>0,06 | Ø 10<br>seismid<br>0,05      | Ø 12<br>c C1 act<br>0,05 | i <b>on</b><br>0,04 | 0,04                | 0,04                | 0,03                | 0,03                | 0,03                 |