

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0458 of 6 June 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

WPER500 Walraven Injection system for concrete

Bonded anchor for diamond coring for use in uncracked concrete

J. van Walraven B.V. Industrieweg 5 3641 RK MIJDRECHT NIEDERLANDE

Walraven factory A3

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0458

Page 2 of 23 | 6 June 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 6 June 2016

Specific Part

1 Technical description of the product

The "WPER500 Walraven Injection System for concrete for concrete" is a bonded anchor consisting of a cartridge with injection mortar WPER500 diamond and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M10 to M24 or reinforcing bar in the range of diameter 10 to 25 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for design according to TR 029	See Annex C 1 to C 4		
Characteristic resistance for design according to CEN/TS 1992-4:2009	See Annex C 5 to C 8		
Displacements under tension and shear loads	See Annex C 9 to C 10		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0458

Page 4 of 23 | 6 June 2016

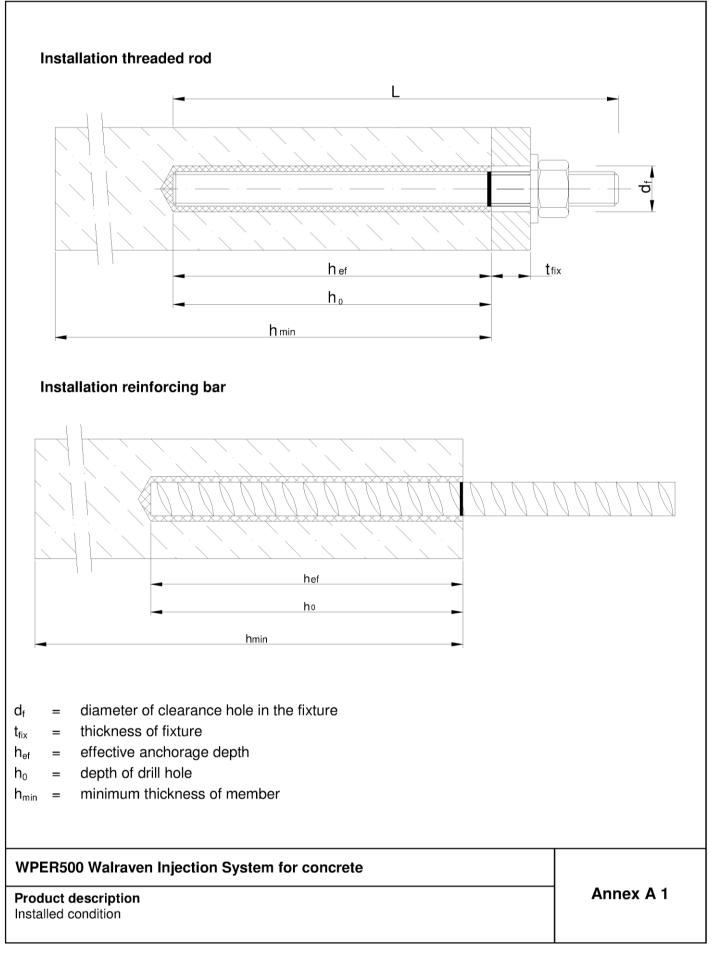
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

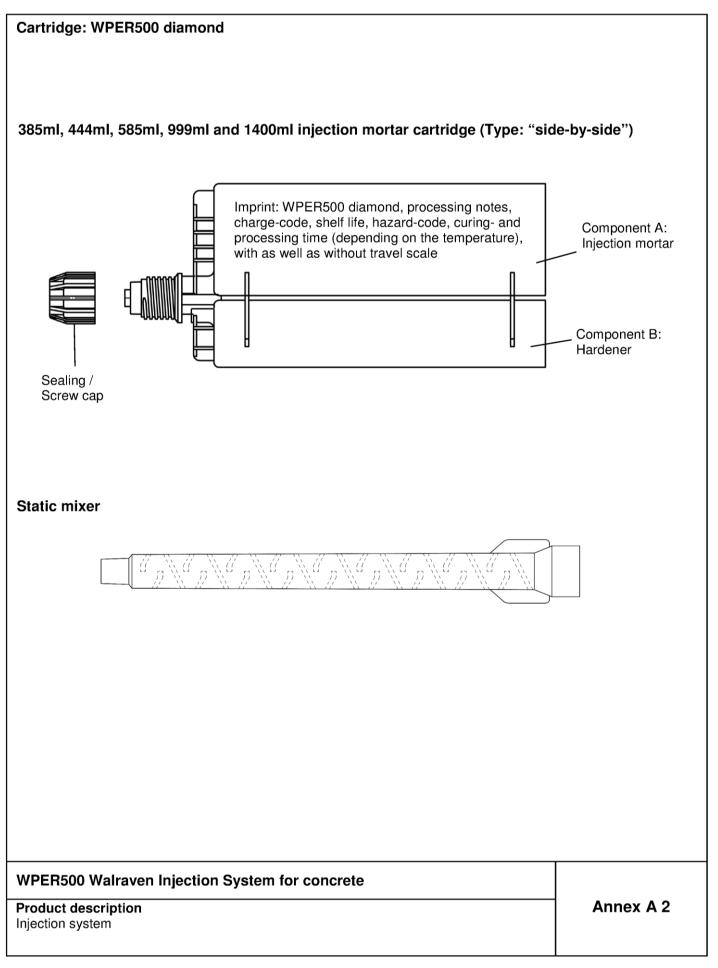
In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

The system to be applied is. T

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 6 June 2016 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-16/0458 of 6 June 2016

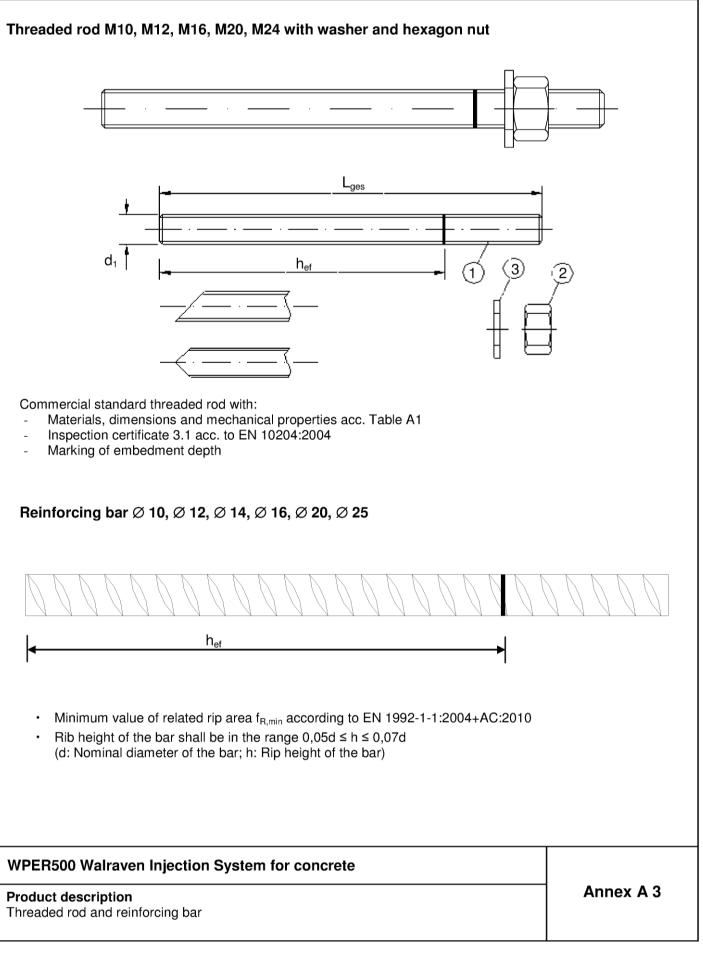


Table A1: Materials

Part	Designation	Material				
Steel	, zinc plated \ge 5 µm acc. to EN ISO 4042:19 , hot-dip galvanised \ge 40 µm acc. to EN ISO	999 or	C:2009			
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 5.8, 8.8, EN 1993-1-4)1			
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised				
Stain	less steel					
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 ≤ M24: Property class 70 EN ISO 3506-	-			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10 ≤ M24: Property class 70 (for class 70 ro	,			
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	10088-1:2005			
High	corrosion resistance steel					
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 ≤ M24: Property class 70 EN ISO 3506-	-			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	005			
Reinf	orcing bars					
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	I 1992-1-1/NA:2013			
Prod	ER500 Walraven Injection System for o	concrete	Annex A 4			
Mate	rials					
25252 1			8 06 01 150/1			

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: M10 to M24, Rebar Ø10 to Ø25.

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M10 to M24, Rebar Ø10 to Ø25.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M10 to M24, Rebar Ø10 to Ø25.
- Flooded holes (not sea water): M10 to M24, Rebar Ø10 to Ø25.
- · Hole drilling by diamond drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

WPER500 Walraven Injection System for concrete

Intended Use Specifications

ſ

Anchor size		M 10	M 12	M 16	M 20	M 24	
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28	
Embedment depth and bore	h _{ef,min} [mm] =	60	70	80	90	96	
hole depth	h _{ef,max} [mm] =	200	240	320	400	480	
Diameter of clearance hole in the fixture	d _f [mm] ≤	12	14	18	22	26	
Diameter of steel brush	d _b [mm] ≥	14	16	20	26	30	
Torque moment	T _{inst} [Nm]	20	40	80	120	160	
Thickness of fixture	t _{fix,min} [mm] >	0					
Thickness of fixture	t _{fix,max} [mm] <	1500					
Minimum thickness of member	h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d₀				
Minimum spacing	s _{min} [mm]	50	60	80	100	120	
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	

Table B2: Installation parameters for rebar

Rebar size	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Nominal drill hole diameter	d ₀ [mm] =	14	16	18	20	24	32
Embedment depth and bore	h _{ef,min} [mm] =	60	70	75	80	90	100
hole depth	h _{ef,max} [mm] =	200	240	280	320	400	500
Diameter of steel brush	d _⊳ [mm] ≥	16	18	20	22	26	34
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm	h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	50	60	70	80	100	125
Minimum edge distance	c _{min} [mm]	50	60	70	80	100	125

WPER500 Walraven Injection System for concrete

Intended Use Installation parameters

Steel brush Table B3: Parameter cleaning and setting tools d_{b,min} Threaded Piston \mathbf{d}_0 db Rebar min. Rod Drill bit - Ø Brush - Ø plug Brush - Ø (mm) (mm) (mm) (mm) (mm) (No.) M10 12 14 12,5 M12 10 14 16 14,5 No 12 18 16 16,5 piston plug required M16 14 20 18 18,5 22 16 20 20,5 M20 20 24 26 24,5 # 24 M24 28 30 28,5 # 28 25 32 34 32,5 # 32

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 12 mm to 32 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 32 mm

WPER500 Walraven Injection System for concrete

Intended Use

Cleaning and setting tools

Installation in	structions	
	1b. Drill with diamond drill a hole into the base material to the size and required by the selected anchor (Table B1 or Table B2).	embedment depth
	2a. Rinsing with water until clear water comes out.	
<u>*******</u> *** 2x	2b. Check brush diameter acc. Table B3 and attach the brush to a drilli screwdriver. Brush the hole with an appropriate sized wire brush > minimum of two times. If the bore hole ground is not reached with the extension shall be used (Table B3).	d _{b,min} (Table B3) a
	2c. Rinsing again with water until clear water comes out.	
	Attention! Standing water in the bore hole must be removed bef	ore cleaning.
2x	2d. Starting from the bottom or back of the bore hole, blow the hole cle. (Annex B3) (min. 6 bar) a minimum of two times. If the bore hole gr extension shall be used.	
2x	 2e. Check brush diameter acc. Table B3 and attach the brush to a drilli screwdriver. Brush the hole with an appropriate sized wire brush > o minimum of two times. If the bore hole ground is not reached with the extension shall be used (Table B3). 2f. Finally blow the hole clean again with compressed air acc. Annex E minimum of two times. If the bore hole ground is not reached an ex After cleaning, the bore hole has to be protected against re-co appropriate way, until dispensing the mortar in the bore hole. I cleaning has to be repeated directly before dispensing the mort must not contaminate the bore hole again. 	d _{b,min} (Table B3) a ne brush, a brush 33 (min. 6 bar) a tension shall be used. ntamination in an If necessary, the
	3. Attach a supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working well as for new cartridges, a new static-mixer shall be used.	-
	4. Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5 Prior to dispensing into the anchor hole, squeeze out separately a n strokes and discard non-uniformly mixed adhesive components unti consistent grey colour. For foil tube cartridges is must be discarded strokes.	I the mortar shows a
WPER500 Walra	ven Injection System for concrete	
Intended Use		Annex B 4

Installation instructions

Installation inst	ructions (continuation)					
6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing no the hole fills to avoid creating air pockets. For embedment larger than 190 m extension nozzle shall be used. For overhead and horizontal installation a pis plug (Annex B 3) and extension nozzle shall be used. Observe the gel-/ work times given in Table B4.						
	Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.					
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).					
20°C e.g.	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).					
	 After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench. 					

Table B4: Minimum curing time

Concrete temperature	Gelling- working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ + 40 °C	12 min	4 h	8 h

WPER500 Walraven Injection System for concrete

Intended Use Installation instructions (continuation) Curing time

tance,	N _{Rk,s}	[kN]	23	34	63	98	141	
tance,	N _{Rk,s}	[kN]	29	42	78	122	176	
tance,	N _{Rk,s}	[kN]	46	67	125	196	282	
	N _{Rk,s}	[kN]	41	59	110	171	247	
ncrete cone failure								
nce in non-cracked concr	ete C20/25	5						
dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	11	10	10	9,5	9,0	
flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,0	10	9,5	9,5	8,5	
dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,0	6,5	6,0	6,0	5,5	
flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,0	6,0	5,5	
dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	6,0	6,0	5,5	5,0	5,0	
flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,0	5,0	5,0	
	C30/37			1,04				
	030/00				1,10			
	C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le$			$\left \frac{h}{ef}\right \leq 2,4 \cdot I$	h _{ef}	
	S _{cr,sp}	[mm]						
	γ2		1,0	1,2				
	dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole dry and wet concrete	tance, NRk,s tance, NRk,s ncrete cone failure nce in non-cracked concrete C20/25 dry and wet concrete TRK,ucr flooded bore hole TRK,ucr	tance, tance, R,NRk,s[kN]tance, R,NRk,s[kN]ncrete cone failureImage: state s	tance, tance, R, $N_{Rk,s}$ $[kN]$ 46tance, R, $N_{Rk,s}$ $[kN]$ 41ncrete cone failurence in non-cracked concrete C20/25dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 11flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,0dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,5dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,5dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 6,0flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,0color $C30/37$ $C40/50$ $C50/60$ $C50/60$ cor,sp $[mm]$ $1,0$ scr,sp $[mm]$ $1,0$	tance, tance, R, $N_{Rk,s}$ $[kN]$ 4667tance, R, $N_{Rk,s}$ $[kN]$ 4159ncrete cone failurence in non-cracked concrete C20/25dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 1110flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,010dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 9,010dry and wet concrete $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,56,5flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 5,06,0flooded bore hole $\tau_{Rk,ucr}$ $[N/mm^2]$ π_{R} π_{R} flooded bore π_{R} π_{R} <td>tance, NRk,s [KN] 46 67 125 tance, NRk,s [kN] 41 59 110 ncrete cone failure Image: constant of the state of the state</td> <td>tance, NRk,s [KN] 46 67 125 196 tance, NRk,s [KN] 41 59 110 171 nce in non-cracked concrete C20/25 dry and wet concrete $\tau_{Rk,uer}$ [N/mm²] 11 10 9,5 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 9,0 10 9,5 dry and wet concrete $\tau_{Rk,uer}$ [N/mm²] 7,0 6,5 6,0 6,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,5 6,5 6,0 6,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,5 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 C40/50 1,04</td>	tance, NRk,s [KN] 46 67 125 tance, NRk,s [kN] 41 59 110 ncrete cone failure Image: constant of the state	tance, NRk,s [KN] 46 67 125 196 tance, NRk,s [KN] 41 59 110 171 nce in non-cracked concrete C20/25 dry and wet concrete $\tau_{Rk,uer}$ [N/mm²] 11 10 9,5 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 9,0 10 9,5 dry and wet concrete $\tau_{Rk,uer}$ [N/mm²] 7,0 6,5 6,0 6,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,5 6,5 6,0 6,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,5 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 flooded bore hole $\tau_{Rk,uer}$ [N/mm²] 5,0 6,0 5,0 5,0 C40/50 1,04	

Table C2:Characteristic values of resistance for threaded rods under shear loads in
non-cracked concrete (Design according to TR 029)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm							
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	$V_{Rk,s}$	[kN]	20	30	55	86	124
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	$M^0_{Rk,s}$	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	$M^0_{Rk,s}$	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]			2,0		
Installation safety factor	γ2		1,0				
Concrete edge failure							
Installation safety factor	γ ₂				1,0		

WPER500 Walraven Injection System for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to TR 029)

Annex C 2

	aracteristic value						ion load	ls in	
Anchor size reinforci	ng bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure									<u> </u>
Characteristic tension	resistance	N _{Rk,s}	[kN]			As	• f _{uk}		
Combined pullout an	d concrete cone failure	9							
Characteristic bond re	sistance in non-cracked	concrete	C20/25						
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40°Ċ/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
		C30/3	C30/37			1,	04		I
Increasing factor Ψc		C40/50				1,	08		
ΨC		C50/60	D			1,	10		
Splitting failure									
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$					
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}					
Installation safety facto	or	γ2		1,0			1,2		
Performances	ven Injection Syste				ked concre	te		Annex	C 3

Z35253.16

(Design according to TR 029)

Table C4: Characteris cracked cor						ear load	ls in non	-	
Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Steel failure without lever arm		I							
Characteristic shear resistance	V _{Rk,s}	[kN]			0,50 ·	$A_s \cdot f_{uk}$	k		
Steel failure with lever arm									
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]			1.2 • V	V _{el} ∙ f _{uk}	ĺuk		
Concrete pry-out failure									
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]			2	,0			
Installation safety factor	γ2				1	,0			
Concrete edge failure									
Installation safety factor	γ2				1	,0			
Performances	WPER500 Walraven Injection System for concrete Performances Characteristic values of resistance for rebar under shear loads in non-cracked concrete,								
(Design according to TR 029)					,				

Anchor size threaded ro	od			M 10	M 12	M 16	M 20	M24
Steel failure								
Characteristic tension res Steel, property class 4.6	istance,	N _{Rk,s}	[kN]	23	34	63	98	141
Characteristic tension res Steel, property class 5.8	istance,	N _{Rk,s}	[kN]	29	42	78	122	176
Characteristic tension res Steel, property class 8.8	istance,	N _{Rk,s}	[kN]	46	67	125	196	282
Characteristic tension res Stainless steel A4 and H0 property class 70		N _{Rk,s}	[kN]	41	59	110	171	247
Combined pullout and c	oncrete cone failure		•					
Characteristic bond resist	ance in non-cracked conci	rete C20/25	5					
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	11	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,0	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,0	6,5	6,0	6,0	5,5
Temperature range I: 40°C/24°C Temperature range II:	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	6,0	5,0	5,0	5,0
		C30/37			1	1,04	1	
Increasing factor Ψ_{c}		C40/50				1,08		
		C50/60				1,10		
Factor according to CEN/TS 1992-4-5 Sectior	n 6.2.2.3	k ₈	[-]			10,1		
Concrete cone failure								
Factor according to CEN/TS 1992-4-5 Sectior	n 6.2.3.1	k_{ucr}	[-]			10,1		
Edge distance		C _{cr,N}	[mm]			1,5 h _{ef}		
Axial distance		S _{cr,N}	[mm]			3,0 h _{ef}		
Splitting failure								
Edge distance		C _{cr,sp}	[mm]	1,0) · h _{ef} ≤ 2 ·	$h_{ef}\left(2,5-\frac{1}{h}\right)$	$\left(\frac{h}{h_{ef}}\right) \le 2,4 \cdot$	h _{ef}
Axial distance		S _{cr,sp}	[mm]			2 c _{cr,sp}		
Installation safety factor		γinst		1,0		1	,2	

WPER500 Walraven Injection System for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Annex C 5

Table C6: Characteristic values of resistance for threaded rods under shear loads in noncracked concrete (Design according to CEN/TS 1992-4)

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm		I					
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k2				0,8		
Steel failure with lever arm		I					
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	M ⁰ Rk,s	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃				2,0		
Installation safety factor	γinst				1,0		
Concrete edge failure							
Effective length of anchor	I _f	[mm]		l _f =	= min(h _{ef} ; 8 d _n	om)	
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24
Installation safety factor	γinst				1,0		

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4)

Annex C 6

	acteristic value cracked concre							ls in	
Anchor size reinforcing	bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure									
Characteristic tension res	istance	N _{Rk,s}	[kN]			As	• f _{uk}		
Combined pullout and o	concrete cone failure	•							
Characteristic bond resist	ance in non-cracked	concrete	C20/25						
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
Increasing factor		C30/37					04		
ψ_c		C40/50					08		
Factor according to CEN/TS 1992-4-5 Section	6223	C50/60	[-]			1,	10),1		
Concrete cone failure	10.2.2.3								
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1	k _{ucr}	[-]			10),1		
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}		
Splitting failure									
Edge distance		C _{cr,sp}	[mm]		1,0 · h _{ef} :	$\leq 2 \cdot h_{ef} \left(2 \right)$	$5 - \frac{h}{h_{ef}} \le$	≤ 2,4 · h _{ef}	
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp		
Installation safety factor		γinst		1,0			1,2		
WPER500 Walrovo	n Injection Syste	um for	concrete						
WPER500 Walrave Performances Characteristic values of r (Design according to CE	resistance for rebar u				ked concre	te		Annex	C 7

Table C8: Characteristic concrete (Des						ar load	s in non-c	racked
Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure without lever arm			1					
Characteristic shear resistance	V _{Rk,s}	[kN]			0,50 ·	A _s ∙ f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂				0,	8		
Steel failure with lever arm								
Characteristic bending moment	$M^{0}_{Rk,s}$	[Nm]			1.2 • W	/ _{el} ∙ f _{uk}		
Concrete pry-out failure								
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃				2,	0		
Installation safety factor	γinst				1,	0		
Concrete edge failure								
Effective length of anchor	lf	[mm]						
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	16	20	25
Installation safety factor	γinst				1,	0		
WPER500 Walraven Injection	on System f	or con	ocrete				Annex	C 9
Performances Characteristic values of resistance according to CEN/TS 1992-4)	for rebar under	shear lo	ads in non-c	racked cond	crete, (Desig	n	Annex	6

Table C9:	Displaceme	nts under tensio	n load ¹⁾ (th	readed ro	d)		
Anchor size threa	ded rod		M 10	M 12	M 16	M 20	M24
Temperature rang	je 40°C/24°C for	non-cracked concrete	e C20/25				
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,052	0,061	0,079	0,096	0,114
Temperature rang	je 72°C/43°C an	d 60°C/43°C for non-cr	acked concret	e C20/25			
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor τ ; τ : action bond strength

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded	d rod		M 10	M 12	M 16	M 20	M24
Displacement	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor V;

WPER500 Walraven Injection System for concrete

Performances Displacements (threaded rods) Annex C 9

Anchor size rei	inforcing bar		Ø 10	o e	12	Ø 14	Ø 16	Ø 20	Ø 25
Temperature ra	ange 40°C/24	°C for non-crack	ed concr	ete C20/25		I			
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,01	3 0,	015	0,018	0,020	0,024	0,030
Displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,05	2 0,	061	0,070	0,079	0,096	0,118
Temperature ra	ange 72°C/43	°C and 60°C/43°(C for non	-cracked c	oncrete C2	20/25		L	
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,01	5 0,	018	0,020	0,023	0,028	0,034
Displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,06	0 0,	070	0,081	0,091	0,111	0,136
Anchor size re	inforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
	inforcing bar δνο-fac			Ø 10 0,05	Ø 12 0,05	Ø 14 0,04	Ø 16 0,04	Ø 20 0,04	Ø 25 0,03
Displacement Displacement	δ _{v₀} -fac δ _{v∞} -fac	tor [mm/(kN)] tor [mm/(kN)]							
Anchor size rel Displacement Displacement $^{1)}$ Calculation $\delta_{V0} = \delta_{V0}$ -fa $\delta_{V\infty} = \delta_{V\infty}$ -fi	$\begin{array}{c c} & \delta_{V_0} \text{-fact} \\ & \delta_{V_{\infty}} \text{-fact} \\ & \delta_{V_{\infty}} \text{-fact} \\ & \text{of the displa} \\ & \text{actor} & V; \end{array}$	tor [mm/(kN)] tor [mm/(kN)]	shear loac	0,05 0,08	0,05	0,04	0,04	0,04	0,03